When the plan goes awry: how to negotiate estrus synchronization errors in beef cattle

  • Jessica Klabnik Department of Veterinary Clinical Sciences, Auburn University College of Veterinary Medicine, Auburn, AL, USA
  • Emma Horn Geneuity Clinical Research Services, Maryville, TN, USA
Keywords: Artificial Insemination, bovine, estrous synchronization

Abstract

Estrus synchronization protocols vary widely, and errors during implementation are not uncommon. When an error is made, recommendations for resolution must consider the initial purpose of implementing the synchronization protocol in the herd. The ideal solution is to convert the protocol to a different published protocol. When this is not possible, the safest solution for maintaining an acceptable pregnancy rate is often either restarting a synchronization program or potentially foregoing artificial insemination for the season. Knowledge of estrous cycle physiology and how hormone treatments manipulate the cycle are foundational when attempting to modify a protocol based on the specific error that is made. Errors made early in a synchronization protocol tend to be more manageable than those made toward the end of the protocol. The use of less valuable semen and immediate introduction of a clean-up bull should be considered to maximize pregnancy outcomes when attempting to correct an error during estrus synchronization.

Downloads

Download data is not yet available.

References

1. Pursley JR, Silcox RW, Wiltbank MC: Effect of time of artificial insemination on pregnancy rates, calving rates, pregnancy loss, and gender ratio after synchronization of ovulation in lactating dairy cows. J Dairy Sci 1998;81:2139–2144. doi: 10.3168/jds.S0022-0302(98)75790-X

2. Roelofs JB, van Eerdenburg FJ, Soede NM, et al: Various behavioral signs of estrous and their relationship with time of ovulation in dairy cattle. Theriogenology 2005;63:1366–1377. doi: 10.1016/j.theriogenology.2004.07.009

3. Lamb GC: Overcoming compliance issues to ensure success of a TAI project. In: Proceedings of the 2021 Virtual Applied Reproductive Strategies in Beef Cattle, September 15–17, Beef Reproduction Task Force: 2021. Available from: https://www.youtube.com/watch?v=xqTceTU5vpY

4. Perry GA, Smith MF: Management factors that impact the efficiency of applied reproductive technologies. In: Proceedings of the Applied Reproductive Strategies in Beef Cattle, August 17–18, Beef Reproduction Task Force: 2015, Davis, CA: 2015. p. 1–29.

5. Kibre D, Ashebir G, Gebrekidan B, et al: Study on factors affecting estrus synchronization in smallholder dairy farming systems of Tigray, Northern Ethiopia. Vet Med Int 2022;2022:1–8. doi: 10.1155/2022/2435696

6. Patterson DJ, Mallory DA, Nash JM, et al: Estrus synchronization protocols for heifers. In: Proceedings of the Applied Reproductive Strategies in Beef Cattle, January 28–29, Beef Reproduction Task Force: 2010, San Antonio, TX: 2010. p. 1–39.

7. Larson LL, Ball PJH: Regulation of estrous cycles in dairy cattle: a review. Theriogenology 1992;38:255–267. doi: 10.1016/0093-691X(92)90234-I

8. Beal W: Current estrus synchronization and artificial insemination programs for cattle. J Anim Sci 1998;76:30–38. doi: 10.2527/1998.76suppl_330x

9. Tegegne A, Warnick AC, Mukasa-Mugerwa E, et al: Fertility of Bos indicus and Bos indicus x Bos taurus crossbreed cattle after estrus synchronization. Theriogenology 1989;31:361–370. doi: 10.1016/0093-691X(89)90542-6

10. Griffith AP, Boyer CN, Rhinehart JD, et al: Cost-Benefit Analysis of Timed AI and Natural Service in Beef Cattle. St. Paul, AgEcon Search UMN: 2020. p. 1–11.

11. Moore K: Cloning and the beef cattle industry. In: Michael JF, Robert SS, Joel VY. Factors Affecting Calf Crop: Biotechnology of Reproduction. Boca Raton, FL; CRC Press: 2002. p. 219–229.

12. Perry G, Daly R, Melroe T: Increasing your calf crop by management, pregnancy testing, and breeding soundness examination of bulls. SDSU Extens Extra Arch 2009;91:1–6.

13. Odde KG: A review of synchronization of estrus in postpartum cattle. J Anim Sci 1990;68:817–830. doi: 10.2527/1990.683817x

14. Perry GA, Smith MF: Keys to successful estrus synchronization and artificial insemination programs. Proceedings of the Applied Reproduction Strategies in Beef Cattle Symposium. Stillwater, OK: 2014. p. 47–74.

15. Lardner H, Damiran D, Larson K: Comparison of FTAI and natural service breeding programs on beef cow reproductive performance, program cost and partial budget evaluation. J Agric Sci 2020;12:1–13. doi: 10.5539/jas.v12n9p1

16. Farin PW, Chenoweth PJ, Mateos ER, et al: Beef bulls mated to estrus synchronized heifers – single vs multi-sire breeding groups. Theriogenology 1982;17:365–372. doi: 10.1016/0093-691X(82)90016-4

17. Farin PW, Chenoweth PJ, Tomky DF, et al: Breeding soundness, libido and performance of beef bulls mated to estrus synchronized females. Theriogenology 1989;32:717–725. doi: 10.1016/0093-691X(89)90460-3

18. Petherick J: A review of some factors affecting the expression of libido in beef cattle, and individual bull and herd fertility. Appl Anim Behav Sci 2005;90:185–205. doi: 10.1016/j.applanim.2004.08.021

19. Pexton J, Farin P, Rupp G, et al: Factors affecting mating activity and pregnancy rates with beef bulls mated to estrus synchronized females. Theriogenology 1990;34:1059–1070. doi: 10.1016/S0093-691X(05)80005-6

20. Koziol JH, Armstrong CL: Manual for Breeding Soundness Examination of Bulls. Montgomery, AL; Society for Theriogenology: 2018.

21. Johnson SK, Funston RN, Hall JB, et al: Multi-state beef reproduction task force provides science-based recommendations for the application of reproductive technologies. J Anim Sci 2011;89:2950–2954. doi: 10.2527/jas.2010-3719

22. Islam R: Synchronization of estrus in cattle: a review. Vet World 2011;4:136–141. doi: 10.5455/vetworld.2011.136-141

23. Lucy MC, McDougall S, Nation DP: The use of hormonal treatments to improve the reproductive performance of lactating dairy cows in feedlot or pasture-based management systems. Anim Reprod Sci 2004;82–83:495–512. doi: 10.1016/j.anireprosci.2004.05.004

24. Sartori R, Barros CM: Reproductive cycles in Bos indicus cattle. Anim Reprod Sci 2011;124:244–250. doi: 10.1016/j.anireprosci.2011.02.006

25. Williams GL, Stanko RL: Pregnancy rates to fixed-time AI in Bos indicus-influenced beef cows using PGF2alpha with (Bee Synch I) or without (Bee Synch II) GnRH at the onset of the 5-day CO-Synch + CIDR protocol. Theriogenology 2020;142:229–235. doi: 10.1016/j.theriogenology.2019.09.047

26. Trimberger GW, Hansel W: Conception rate and ovarian function following estrus control by progesterone injections in dairy cattle. J Anim Sci 1955;14:224–232. doi: 10.2527/jas1955.141224x

27. Roelofs JB, Graat EAM, Mullaart E, et al: Effects of insemination–ovulation interval on fertilization rates and embryo characteristics in dairy cattle. Theriogenology 2006;66:2173–2181. doi: 10.1016/j.theriogenology.2006.07.005

28. Pohler KG, Geary TW, Atkins JA, et al: Follicular determinants of pregnancy establishment and maintenance. Cell Tissue Res 2012;349:649–664. doi: 10.1007/s00441-012-1386-8

29. Ahmad N, Neal Schrick F, Butcher RL, et al: Effect of persistent follicles on early embryonic losses in beef cows. Biol Reprod 1995;52:1129–1135. doi: 10.1095/biolreprod52.5.1129

30. Bourdon M, Santulli P, Kefelian F, et al: Prolonged estrogen (E2) treatment prior to frozen-blastocyst transfer decreases the live birth rate. Hum Reprod 2018;33:905–913. doi: 10.1093/humrep/dey041

31. Cerri RL, Rutigliano HM, Chebel RC, et al: Period of dominance of the ovulatory follicle influences embryo quality in lactating dairy cows. Reproduction 2009;137:813–823. doi: 10.1530/REP-08-0242

32. Mihm M, Crowe M, Knight P, et al: Follicle wave growth in cattle. Reprod Domest Anim 2002;37:191–200. doi: 10.1046/j.1439-0531.2002.00371.x

33. Fissore RA, Kurokawa M, Knott J, et al: Mechanisms underlying oocyte activation and postovulatory ageing. Reproduction 2002;124:745–754. doi: 10.1530/rep.0.1240745

34. Sirard M-A, Richard F, Blondin P, et al: Contribution of the oocyte to embryo quality. Theriogenology 2006;65:126–136. doi: 10.1016/j.theriogenology.2005.09.020

35. Lord T, Nixon B, Jones KT, et al: Melatonin prevents postovulatory oocyte aging in the mouse and extends the window for optimal fertilization in vitro. Biol Reprod 2013;88:67. doi: 10.1095/biolreprod.112.106450

36. Funston RN, Ansotegui RP, Lipsey RJ, et al: Synchronization of estrus in beef heifers using either melengesterol acetate (MGA)/prostaglandin or MGA/Select Synch. Theriogenology 2002;57:1485–1491. doi: 10.1016/S0093-691X(02)00654-4

37. Cruppe L, Day M, Abreu F, et al: The requirement of GnRH at the beginning of the five-day CO-Synch+ controlled internal drug release protocol in beef heifers. J Anim Sci 2014;92:4198–4203. doi: 10.2527/jas.2014-7772

38. Forde N, Beltman ME, Lonergan P, et al: Oestrous cycles in Bos taurus cattle. Anim Reprod Sci 2011;124:163–169. doi: 10.1016/j.anireprosci.2010.08.025

39. DeJarnette JM, Marshall CE: Effects of pre-synchronization using combinations PGF(2 alpha) and (or) GnRH on pregnancy rates of Ovsynch- and Cosynch-treated lactating Holstein cows. Anim Reprod Sci 2003;77:51–60. doi: 10.1016/S0378-4320(03)00033-2

40. Stevenson JL, Dalton JC, Santos JEP, et al: Effect of synchronization protocols on follicular development and estradiol and progesterone concentrations of dairy heifers. J Dairy Sci 2008;91:3045–3056. doi: 10.3168/jds.2007-0625

41. Sunderland SJ, Crowe MA, Boland MP, et al: Selection, dominance and atresia of follicles during the oestrous cycle of heifers. Reproduction 1994;101:547–555. doi: 10.1530/jrf.0.1010547

42. Fortune J, Hansel W: Concentrations of steroids and gonadotropins in follicular fluid from normal heifers and heifers primed for superovulation. Biol Reprod 1985;32:1069–1079. doi: 10.1095/biolreprod32.5.1069

43. Santos J, Narciso C, Rivera F, et al: Effect of reducing the period of follicle dominance in a timed artificial insemination protocol on reproduction of dairy cows. J Dairy Sci 2010;93:2976–2988. doi: 10.3168/jds.2009-2870

44. Starbuck G, Gutierrez C, Peters A, et al: Timing of follicular phase events and the postovulatory progesterone rise following synchronisation of oestrus in cows. Vet J 2006;172:103–108. doi: 10.1016/j.tvjl.2005.02.006

45. Skarzynski DJ, Jaroszewski JJ, Okuda K: Luteotropic mechanisms in the bovine corpus luteum: role of oxytocin, prostaglandin F2 α, progesterone and noradrenaline. J Reprod Dev 2001;47:125–137. doi: 10.1262/jrd.47.125

46. Rao CV, Estergreen VL, Carman FR, Jr., et al: Receptors for gonadotrophin and prostaglandin F2α in bovine corpora lutea of early, mid and late luteal phase. Acta Endocrinol 1979;91:529–537. doi: 10.1530/acta.0.0910529

47. Shirasuna K, Akabane Y, Beindorff N, et al: Expression of prostaglandin F2α (PGF2α) receptor and its isoforms in the bovine corpus luteum during the estrous cycle and PGF2α-induced luteolysis. Domest Anim Endocrinol 2012;43:227–238. doi: 10.1016/j.domaniend.2012.03.003

48. Hafs HD, Louis TM, Noden PA, et al: Control of the estrous cycle with prostaglandin F2α in cattle and horses. J Anim Sci 1974;38:10–21. doi: 10.1093/ansci/38.suppl_10.38

49. Miyamoto A, Shirasuna K, Wijayagunawardane MPB, et al: Blood flow: a key regulatory component of corpus luteum function in the cow. Domest Anim Endocrin 2005;29:329–339. doi: 10.1016/j.domaniend.2005.03.011

50. Tsai SJ, Wiltbank MC: Prostaglandin F-2 alpha regulates distinct physiological changes in early and mid-cycle bovine corpora lutea. Biol Reprod 1998;58:346–352. doi: 10.1095/biolreprod58.2.346

51. Adeyemo O, Akpokodje UU, Odili PI: Control of estrus in Bos indicus and Bos taurus heifers with prostaglandin-F2-alpha. Theriogenology 1979;12:255–262. doi: 10.1016/S0093-691X(79)80005-9

52. Kaneko K, Mungthong K, Noguchi M: Day of prostaglandin F-2 alpha administration after natural ovulation affects the interval to ovulation, the type of ovulated follicle, and the failure to induce ovulation in cows. J Vet Med Sci 2020;82:590–597. doi: 10.1292/jvms.19-0674

53. Wiltbank MC, Souza AH, Carvalho PD, et al: Improving fertility to timed artificial insemination by manipulation of circulating progesterone concentrations in lactating dairy cattle. Reprod Fert Dev 2011;24:238–243. doi: 10.1071/RD11913

54. Rossmanith WG, Liu CH, Laughlin GA, et al: Relative changes in LH pulsatility during the menstrual-cycle – using data from hypogonadal women as a reference point. Clin Endocrinol 1990;32:647–660. doi: 10.1111/j.1365-2265.1990.tb00909.x

55. Thompson K, Stevenson J, Lamb G, et al: Follicular, hormonal, and pregnancy responses of early postpartum suckled beef cows to GnRH, norgestomet, and prostaglandin F2α. J Anim Sci 1999;77:1823–1832. doi: 10.2527/1999.7771823x

56. Sinchak K, Wagner EJ: Estradiol signaling in the regulation of reproduction and energy balance. Front Neuroendocrinol 2012;33:342–363. doi: 10.1016/j.yfrne.2012.08.004

57. Carruthers TD, Convey EM, Kesner JS, et al: The hypothalamo-pituitary gonadotrophic axis of suckled and nonsuckled dairy cows postpartum. J Anim Sci 1980;51:949–957. doi: 10.2527/jas1980.514949x

58. Nett T: Function of the hypothalamic-hypophysial axis during the post-partum period in ewes and cows. J Reprod Fertil Suppl 1987;34:201–213.

59. Okamura H, Yamamura T, Wakabayashi Y: Kisspeptin as a master player in the central control of reproduction in mammals: an overview of kisspeptin research in domestic animals. Anim Sci J 2013;84:369–381. doi: 10.1111/asj.12056

60. Pereira JFS, Hartmann W: Regulation of the hypothalamic-pituitary-gonadal axis and the manipulation of the estrous cycle of bovine females. In: Bergstein-Galan TG: editor. Reproduction Biotechnology in Farm Animals. Hyderabad; Avid Science: 2018. p. 75–96.

61. Saldarriaga JP, Cooper DA, Cartmill JA, et al: Ovarian, hormonal, and reproductive events associated with synchronization of ovulation and timed appointment breeding of Bos indicus-influenced cattle using intravaginal progesterone, gonadotropin-releasing hormone, and prostaglandin F2α1. J Anim Sci 2007;85:151–162. doi: 10.2527/jas.2006-335

62. Zuluaga JF, Saldarriaga JP, Cooper DA, et al: Presynchronization with gonadotropin-releasing hormone increases the proportion of Bos indicus-influenced females ovulating at initiation of synchronization but fails to improve synchronized new follicular wave emergence or fixed-time artificial insemination conception rates using intravaginal progesterone, gonadotropin-releasing hormone, and prostaglandin F2α1. J Anim Sci 2010;88:1663–1671. doi: 10.2527/jas.2009-2480

63. Martinez MF, Adams GP, Bergfelt DR, et al: Effect of LH or GnRH on the dominant follicle of the first follicular wave in beef heifers. Anim Reprod Sci 1999;57:23–33. doi: 10.1016/S0378-4320(99)00057-3

64. Pursley JR, Mee MO, Wiltbank MC: Synchronization of ovulation in dairy cows using PGF2α and GnRH. Theriogenology 1995;44:915–923. doi: 10.1016/0093-691X(95)00279-H

65. Pinheiro OL, Barros CM, Figueiredo RA, et al: Estrous behavior and the estrus-to-ovulation interval in Nelore cattle (Bos indicus) with natural estrus or estrus induced with prostaglandin F2α or norgestomet and estradiol valerate. Theriogenology 1998;49:667–681. doi: 10.1016/S0093-691X(98)00017-X

66. Binversie J, Pfeiffer K, Larson J: Modifying the double-Ovsynch protocol to include human chorionic gonadotropin to synchronize ovulation in dairy cattle. Theriogenology 2012;78:2095–2104. doi: 10.1016/j.theriogenology.2012.08.004

67. Stevenson JS, Pursley JR, Garverick HA, et al: Treatment of cycling and noncycling lactating dairy cows with progesterone during Ovsynch1. J Dairy Sci 2006;89:2567–2578. doi: 10.3168/jds.S0022-0302(06)72333-5

68. Geary T, Whittier J, Hallford D, et al: Calf removal improves conception rates to the Ovsynch and CO-Synch protocols. J Anim Sci 2001;79:1–4. doi: 10.2527/2001.7911

69. Geary TW, Whittier JC, Thrift FA, et al: Effects of a timed insemination following synchronization of ovulation using the Ovsynch or CO-Synch protocol in beef cows. Prof Anim Sci 1998;14:217–220. doi: 10.15232/S1080-7446(15)31832-5

70. Ginther O, Knopf L, Kastelic J: Temporal associations among ovarian events in cattle during oestrous cycles with two and three follicular waves. Reproduction 1989;87:223–230. doi: 10.1530/jrf.0.0870223

71. Crowe MA: Reproduction, events and management| estrous cycles: characteristics. In: McSweeney P, McNamara J: editors. Encyclopedia of Dairy Sciences. 3rd edition, Oxford; Academic Press: 2011. p. 948–953.

72. Colazo MG, Kastelic JP, Davis H, et al: Effects of plasma progesterone concentrations on LH release and ovulation in beef cattle given GnRH. Domest Anim Endocrinol 2008;34:109–117. doi: 10.1016/j.domaniend.2006.11.004

73. Taponen J, Katila T, Rodrıguez-Martınez H: Induction of ovulation with gonadotropin-releasing hormone during proestrus in cattle: influence on subsequent follicular growth and luteal function. Anim Reprod Sci 1999;55:91–105. doi: 10.1016/S0378-4320(99)00011-1

74. Denicol AC, Lopes G, Mendonça LGD, et al: Low progesterone concentration during the development of the first follicular wave reduces pregnancy per insemination of lactating dairy cows. J Dairy Sci 2012;95:1794–1806. doi: 10.3168/jds.2011-4650

75. Wolfenson D, Thatcher WW, Savio JD, et al: The effect of a GnRH analogue on the dynamics of follicular development and synchronization of estrus in lactating cyclic dairy cows. Theriogenology 1994;42:633–644. doi: 10.1016/0093-691X(94)90380-2

76. Bergfelt DR, Lightfoot KC, Adams GP: Ovarian synchronization following ultrasound-guided transvaginal follicle ablation in heifers. Theriogenology 1994;42:895–907. doi: 10.1016/0093-691X(94)90113-W

77. Macmillan K, Thatcher W: Effects of an agonist of gonadotropin-releasing hormone on ovarian follicles in cattle. Biol Reprod 1991;45:883–889. doi: 10.1095/biolreprod45.6.883

78. Thatcher W, Drost M, Savio J, et al: New clinical uses of GnRH and its analogues in cattle. Anim Reprod Sci 1993;33:27–49. doi: 10.1016/0378-4320(93)90105-Z

79. Lamb G, Stevenson J, Kesler D, et al: Inclusion of an intravaginal progesterone insert plus GnRH and prostaglandin F2α for ovulation control in postpartum suckled beef cows. J Anim Sci 2001;79:2253–2259. doi: 10.2527/2001.7992253x

80. Diskin MG, Austin EJ, Roche JF: Exogenous hormonal manipulation of ovarian activity in cattle. Domest Anim Endocrinol 2002;23:211–228. doi: 10.1016/S0739-7240(02)00158-3

81. McDowell CM, Anderson LH, Lemenager RP, et al: Development of a progestin-based estrus synchronization program: II. Reproductive response of cows fed melengestrol acetate for 14 days with injections of progesterone and prostaglandin F2α. J Anim Sci 1998;76:1273–1279. doi: 10.2527/1998.7651273x

82. Christensen A, Bentley GE, Cabrera R, et al: Hormonal regulation of female reproduction. Horm Metab Res 2012;44:587–591. doi: 10.1055/s-0032-1306301

83. Custer E, Beal W, Wilson S, et al: Effect of melengestrol acetate (MGA) or progesterone-releasing intravaginal device (PRID) on follicular development, concentrations of estradiol-17 β and progesterone, and luteinizing hormone release during an artificially lengthened bovine estrous cycle. J Anim Sci 1994;72:1282–1289. doi: 10.2527/1994.7251282x

84. Andersen CM, Bonacker RC, Smith EG, et al: Evaluation of the 7 & 7 Synch and 7-day CO-Synch plus CIDR treatment regimens for control of the estrous cycle among beef cows prior to fixed-time artificial insemination with conventional or sex-sorted semen. Anim Reprod Sci 2021;235:106892. doi: 10.1016/j.anireprosci.2021.106892
Published
2023-05-26
How to Cite
Klabnik J., & Horn E. (2023). When the plan goes awry: how to negotiate estrus synchronization errors in beef cattle. Clinical Theriogenology, 15. https://doi.org/10.58292/ct.v15.9265
Section
Review Reports