Highlighting factors contributing to pregnancy loss in beef cattle

  • Brette Poliakiwski Department of Animal Science, Texas A&M University, College Station, TX, USA
  • Damon Smith Department of Animal Science, Texas A&M University, College Station, TX, USA
  • Zachary Seekford Department of Animal Science, Texas A&M University, College Station, TX, USA
  • Ky Pohler Department of Animal Science, Texas A&M University, College Station, TX, USA
Keywords: Cattle, pregnancy, placentation, maternal, sire, environmental

Abstract

Pregnancy loss in beef cattle remains a costly problem for producers, leading to diminished calf crop uniformity and reduced percentages of cows with a calf at the end of calving season. Although several tools exist to ascertain pregnancy status, the first 30 days of pregnancy encompasses the period with the greatest proportion of pregnancy losses and these losses often occur before traditional methods permit pregnancy determination. The ability to accurately predict pregnancy failure remains a major limitation. Blood-based assays detecting chemical changes in maternal circulation have provided insight into embryonic and fetal monitoring and are used to make predictions for pregnancy loss. Although there are certain unknown aspects to the etiology of pregnancy loss, there is growing body of work to identify physiological biomarkers within the maternal, paternal, and embryonic systems to clarify risk factors for pregnancy failure. This review highlights a few of the factors contributing to pregnancy loss and the rapidly evolving methods utilized to predict pregnancy failure. Further, this review highlights a few of the changes to parental physiology after exposure to various environmental factors, the consequences on the physiology of pregnancy and the likelihood of pregnancy success.

Downloads

Download data is not yet available.

References


1.
Reese ST, Franco GA, Poole RK, et al: Pregnancy loss in beef cattle: a meta-analysis. Anim Reprod Sci 2020;212:106251. doi: 10.1016/j.anireprosci.2019.106251


2.
Wiltbank MC, Baez GM, Garcia-Guerra A, et al: Pivotal periods for pregnancy loss during the first trimester of gestation in lactating dairy cows. Theriogenology 2016;86:239-253. doi: 10.1016/j.theriogenology.2016.04.037


3.
Lonergan P, Fair T, Forde N, et al: Embryo development in dairy cattle. Theriogenology 2016;86:270-277. doi: 10.1016/j.theriogenology.2016.04.040


4.
Ealy AD: Pregnancy losses in livestock: an overview of the physiology and endocrinology symposium for the 2020 ASAS-CSAS-WSASAS virtual meeting. J Anim Sci 2020;98:skaa277. doi: 10.1093/jas/skaa277


5.
Whittier WD: Pregnancy determination in cattle: a review of available alternatives. Proceedings, Applied Reproductive Strategies in Beef Cattle October 2013;15:16.


6.
Romano JE, Thompson JA, Kraemer DC, et al: Early pregnancy diagnosis by palpation per rectum: influence on embryo/fetal viability in dairy cattle. Theriogenology 2007;67:486-493. doi: 10.1016/j.theriogenology.2006.08.011


7.
Fricke PM, Ricci A, Giordano JO, et al: Methods for and implementation of pregnancy diagnosis in dairy cows. Vet Clin North Am Food Anim Pract 2016;32:165-180. doi: 10.1016/j.cvfa.2015.09.006


8.
Caraviello D, Weigel K, Fricke P, et al: Survey of management practices on reproductive performance of dairy cattle on large US commercial farms. J Dairy Sci 2006;89:4723-4735. doi: 10.3168/jds.S0022-0302(06)72522-X


9.
Northrop EJ, Rich JJ, Rhoades JR, et al: Comparison of two bovine serum pregnancy tests in detection of artificial insemination pregnancies and pregnancy loss in beef cattle. PLoS One 2019;14:e0211179. doi: 10.1371/journal.pone.0211179


10.
Mayo L, Moore S, Poock S, et al: Validation of a chemical pregnancy test in dairy cows that uses whole blood, shortened incubation times, and visual readout. J Dairy Sci 2016;99:7634-7641. doi: 10.3168/jds.2016-11224


11.
Pohler KG, Pereira MHC, Lopes FR, et al: Circulating concentrations of bovine pregnancy-associated glycoproteins and late embryonic mortality in lactating dairy herds. J Dairy Sci 2016;99:1584-1594. doi: 10.3168/jds.2015-10192


12.
Haugejorden G, Waage S, Dahl E, et al: Pregnancy associated glycoproteins (PAG) in postpartum cows, ewes, goats and their offspring. Theriogenology 2006;66:1976-1984. doi: 10.1016/j.theriogenology.2006.05.016


13.
Ahmad N, Schrick FN, Butcher RL, et al: Effect of persistent follicles on early embryonic losses in beef cows. Biol Reprod 1995;52:1129-1135. doi: 10.1095/biolreprod52.5.1129


14.
Santos J, Thatcher W, Chebel R, et al: The effect of embryonic death rates in cattle on the efficacy of estrus synchronization programs. Anim Reprod Sci 2004;82:513-535. doi: 10.1016/j.anireprosci.2004.04.015


15.
Diskin M, Sreenan J: Fertilization and embryonic mortality rates in beef heifers after artificial insemination. Reproduction 1980;59:463-468. doi: 10.1530/jrf.0.0590463


16.
Perry GA, Smith MF, Lucy MC, et al: Relationship between follicle size at insemination and pregnancy success. Pro Nat Acad Sci 2005;102:5268-5273. doi: 10.1073/pnas.0501700102


17.
Bisinotto R, Chebel R, Santos J: Follicular wave of the ovulatory follicle and not cyclic status influences fertility of dairy cows. J Dairy Sci 2010;93:3578-3587. doi: 10.3168/jds.2010-3047


18.
Graf A, Krebs S, Heininen-Brown M, et al: Genome activation in bovine embryos: review of the literature and new insights from RNA sequencing experiments. Anim Reprod Sci 2014;149:46-58. doi: 10.1016/j.anireprosci.2014.05.016


19.
Graf A, Krebs S, Zakhartchenko V, et al: Fine mapping of genome activation in bovine embryos by RNA sequencing. PNAS 2014;111:4139-4144. doi: 10.1073/pnas.1321569111


20.
Rabaglino MB, Salilew-Wondim D, Zolini A, et al: Machine-learning methods applied to integrated transcriptomic data from bovine blastocysts and elongating conceptuses to identify genes predictive of embryonic competence. FASEB J 2023;37:e22809. doi: 10.1096/fj.202201977R


21.
McMillan W: Statistical models predicting embryo survival to term in cattle after embryo transfer. Theriogenology 1998;50:1053-1070. doi: 10.1016/S0093-691X(98)00207-6


22.
Wiltbank MC, Monteiro PL, Domingues RR, et al: Maintenance of the ruminant corpus luteum during pregnancy: interferon-tau and beyond. J Anim Biosci 2023;17:100827. doi: 10.1016/j.animal.2023.100827


23.
Gifford C, Racicot K, Clark D, et al: Regulation of interferon-stimulated genes in peripheral blood leukocytes in pregnant and bred, nonpregnant dairy cows. J Dairy Sci 2007;90:274-280. doi: 10.3168/jds.S0022-0302(07)72628-0


24.
Oliveira JF, Henkes LE, Ashley RL, et al: Expression of interferon (IFN)-stimulated genes in extrauterine tissues during early pregnancy in sheep is the consequence of endocrine IFN-τ release from the uterine vein. Endocrinology 2008;149:1252-1259. doi: 10.1210/en.2007-0863


25.
Melo GD, Pinto L, Rocha CC, et al: Type I interferon receptors and interferon-τ-stimulated genes in peripheral blood mononuclear cells and polymorphonuclear leucocytes during early pregnancy in beef heifers. Reprod Fertil Dev 2020;32:953-966. doi: 10.1071/RD19430


26.
Domingues RR, Andrade JPN, Cunha TO, et al: Profiles of interferon-stimulated genes in multiple tissues and circulating pregnancy-associated glycoproteins and their association with pregnancy loss in dairy cows. Biol Reprod 2024;110:558-568. doi: 10.1093/biolre/ioad164


27.
De los Santos JA, Andrade JPN, Cangiano L, et al: Transcriptomic analysis reveals gene expression changes in peripheral white blood cells of cows after embryo transfer: implications for pregnancy tolerance. Reprod Domest Anim 2023;58:946-954. doi: 10.1111/rda.14371


28.
Sánchez JM, Mathew DJ, Behura SK, et al: Bovine endometrium responds differentially to age-matched short and long conceptuses. Biol Reprod 2019;101:26-39. doi: 10.1093/biolre/ioz060


29.
Talukder A, Rabaglino M, Browne J, et al: Dose-and time-dependent effects of interferon tau on bovine endometrial gene expression. Theriogenology 2023;211:1-10. doi: 10.1016/j.theriogenology.2023.07.033


30.
Mathew DJ, Sánchez JM, Passaro C, et al: Interferon tau-dependent and independent effects of the bovine conceptus on the endometrial transcriptome. Biol Reprod 2019;100:365-380. doi: 10.1093/biolre/ioy199


31.
Spencer TE, Forde N, Dorniak P, et al: Conceptus-derived prostaglandins regulate gene expression in the endometrium prior to pregnancy recognition in ruminants. Reproduction 2013;146:377-387. doi: 10.1530/REP-13-0165


32.
Wathes DC, Wooding F: An electron microscopic study of implantation in the cow. Am J Anat 1980;159:285-306. doi: 10.1002/aja.1001590305


33.
Seo H, Melo GD, Oliveira RV, et al: Immunohistochemical examination of the uteroplacental interface of cows on days 21, 31, 40, and 67 of gestation. Reproduction 2024;167:e230444. doi: 10.1530/REP-23-0444


34.
Wooding F: The ruminant placental trophoblast binucleate cell: an evolutionary breakthrough. Biol Reprod 2022;107:705-716. doi: 10.1093/biolre/ioac10


35.
Wallace RM, Pohler KG, Smith MF, et al: Gene origins, expression patterns, and use as markers of pregnancy. Reproduction 2015;149:R115-R126. doi: 10.1530/REP-14-0485


36.
Wallace RM, Hart ML, Egen TE, et al: Bovine pregnancy associated glycoproteins can alter selected transcripts in bovine endometrial explants. Theriogenology 2019;131:123-132. doi: 10.1016/j.theriogenology.2019.03.026


37.
Pohler KG, Peres RFG, Green JA, et al: Use of bovine pregnancy-associated glycoproteins to predict late embryonic mortality in postpartum Nelore beef cows. Theriogenology 2016;85:1652-1659. doi: 10.1016/j.theriogenology.2016.01.026


38.
Franco GA, Peres RFG, Martins CFG, et al: Sire contribution to pregnancy loss and pregnancy-associated glycoprotein production in Nelore cows. J Anim Sci 2018;96:632-640. doi: 10.1093/jas/sky015


39.
Griffin C, Lemley C, Pohler K, et al: Characterization of placentome vascular perfusion in relation to pregnancy associated glycoproteins throughout gestation in pregnant beef heifers. Theriogenology 2024;219:94-102. doi: 10.1016/j.theriogenology.2024.02.020


40.
Spencer TE, Forde N, Lonergan P: The role of progesterone and conceptus-derived factors in uterine biology during early pregnancy in ruminants. J Dairy Sci 2016;99:5941-5950. doi: 10.3168/jds.2015-10070


41.
Bazer FW, Wu G, Johnson GA, et al: Uterine histotroph and conceptus development: select nutrients and secreted phosphoprotein 1 affect mechanistic target of rapamycin cell signaling in ewes. Biol Reprod 2011;85:1094-1107. doi: 10.1095/biolreprod.111.094722


42.
Martins T, Pugliesi G, Sponchiado M, et al: Perturbations in the uterine luminal fluid composition are detrimental to pregnancy establishment in cattle. J Animal Sci Biotechnol 2018;9:1-11. doi: 10.1186/s40104-018-0285-6


43.
Spencer TE, Gray CA: Sheep uterine gland knockout (UGKO) model. In: Soares MJ, Hunt JS: editors. Placenta and Trophoblast. Methods in Molecular Medicine. Totowa; Humana Press Inc. 2006;1:85-94. doi: 10.1385/1-59259-983-4:083


44.
Rabaglino MB, Kadarmideen HN: Machine learning approach to integrated endometrial transcriptomic datasets reveals biomarkers predicting uterine receptivity in cattle at seven days after estrous. Sci Rep 2020;10:16981. doi: 10.1038/s41598-020-72988-3


45.
Hansen TR, Sinedino LD, Spencer TE: Paracrine and endocrine actions of interferon tau (IFNT). Reproduction 2017;154:F45-F59. doi: 10.1530/REP-17-0315


46.
Hansen TR, Kazemi M, Keisler DH, et al: Complex binding of the embryonic interferon, ovine trophoblast protein-1, to endometrial receptors. J Interferon Res 1989;9:215-225. doi: 10.1089/jir.1989.9.215


47.
Madureira G, Mion B, Van Winters B, et al: Endometrial responsiveness to interferon-tau and its association with subsequent reproductive performance in dairy heifers. J Dairy Sci 2024;107:7371-7391. doi: 10.3168/jds.2023-24627


48.
Bridges P, Wright D, Buford W, et al: Ability of induced corpora lutea to maintain pregnancy in beef cows. J Anim Sci 2000;78:2942-2949. doi: 10.2527/2000.78112942x


49.
Schallenberger E, Schams D, Meyer H: Sequences of pituitary, ovarian and uterine hormone secretion during the first 5 weeks of pregnancy in dairy cattle. J Reprod Fertil Suppl 1989;37:277-286. PMID: 2509692


50.
Charpigny G, Reinaud P, Tamby J-P, et al: Cyclooxygenase-2 unlike cyclooxygenase-1 is highly expressed in ovine embryos during the implantation period. Biol Reprod 1997;57:1032-1040. doi: 10.1095/biolreprod57.5.1032


51.
Chakraborty J, Das S, Wang J, Dey S: Developmental expression of the cyclo-oxygenase-1 and cyclo-oxygenase-2 genes in the peri-implantation mouse uterus and their differential regulation by the blastocyst and ovarian steroids. J Mol Endocrinol 1996;16:107-122. doi: 10.1677/jme.0.0160107


52.
Jamioł M, Wawrzykowski J, Kankofer M: The influence of progesterone and prostaglandin F2α on decorin and the adhesion of caruncular epithelial cells of bovine placenta at early-mid pregnancy – part II. Reprod Domest Anim 2021;56:1040-1049. doi: 10.1111/rda.13948


53.
Fu C, Mao W, Gao R, et al: Prostaglandin F2α-PTGFR signaling promotes proliferation of endometrial epithelial cells of cattle through cell cycle regulation. Anim Reprod Sci 2020;213:106276. doi: 10.1016/j.anireprosci.2020.106276


54.
Pegorer MF, Vasconcelos JL, Trinca LA, et al: Influence of sire and sire breed (Gyr versus Holstein) on establishment of pregnancy and embryonic loss in lactating Holstein cows during summer heat stress. Theriogenology 2007;67:692-697. doi: 10.1016/j.theriogenology.2006.09.042


55.
Markusfeld-Nir O: Epidemiology of bovine abortions in Israeli dairy herds. Prev Vet Med 1997;31:245-255. doi: 10.1016/S0167-5877(96)01142-7


56.
Franco G, Reese S, Poole R, et al: Sire contribution to pregnancy loss in different periods of embryonic and fetal development of beef cows. Theriogenology 2020;154:84-91. doi: 10.1016/j.theriogenology.2020.05.021


57.
López-Gatius F, Santolaria P, Yaniz J, et al: Factors affecting pregnancy loss from gestation day 38 to 90 in lactating dairy cows from a single herd. Theriogenology 2002;57:1251-1261. doi: 10.1016/S0093-691X(01)00715-4


58.
Thundathil JC, Dance AL, Kastelic JP: Fertility management of bulls to improve beef cattle productivity. Theriogenology 2016;86:397-405. doi: 10.1016/j.theriogenology.2016.04.054


59.
Fortes MR, DeAtley KL, Lehnert SA, et al: Genomic regions associated with fertility traits in male and female cattle: advances from microsatellites to high-density chips and beyond. Anim Reprod Sci 2013;141:1-19. doi: 10.1016/j.anireprosci.2013.07.002


60.
Coulter G, Kozub G: Efficacy of methods used to test fertility of beef bulls used for multiple-sire breeding under range conditions. J Anim Sci 1989;67:1757-1766. doi: 10.2527/jas1989.6771757x


61.
Fontoura A, Montanholi Y, De Amorim MD, et al: Associations between feed efficiency, sexual maturity and fertility-related measures in young beef bulls. Animal 2016;10:96-105. doi: 10.1017/S1751731115001925


62.
Choi J-W, Alkhoury L, Urbano LF, et al: An assessment tool for computer-assisted semen analysis (CASA) algorithms. Sci Rep 2022;12:16830. doi: 10.1038/s41598-022-20943-9


63.
Silva CS, da Costa-E-Silva EV, Dode MAN, et al: Semen quality of Nellore and Angus bulls classified by fertility indices and relations with field fertility in fixed-time artificial insemination. Theriogenology 2023;212:148-156. doi: 10.1016/j.theriogenology.2023.09.001


64.
Fallon L, Diaz-Miranda E, Hamilton L, et al: The development of new biomarkers of spermatozoa quality in cattle. Front Vet Sci 2023;10:e1258295. doi: 10.3389/fvets.2023.1258295


65.
Norman H, Hutchison J, VanRaden P: Evaluations for service-sire conception rate for heifer and cow inseminations with conventional and sexed semen. J Dairy Sci 2011;94:6135-6142. doi: 10.3168/jds.2010-3875


66.
Ortega MS, Moraes JGN, Patterson DJ, et al: Influences of sire conception rate on pregnancy establishment in dairy cattle. Biol Reprod 2018;99:1244-1254. doi: 10.1093/biolre/ioy141


67.
Pohler K, Geary T, Johnson C, et al: Circulating bovine pregnancy associated glycoproteins are associated with late embryonic/fetal survival but not ovulatory follicle size in suckled beef cows. J Anim Sci 2013;91:4158-4167. doi: 10.2527/jas.2013-6348


68.
Suomalainen E: Parthenogenesis in animals. Adv Genet 1950;3:193-253. doi: 10.1016/S0065-2660(08)60086-3


69.
Barton SC, Surani M, Norris M: Role of paternal and maternal genomes in mouse development. Nature 1984;311:374-376. doi: 10.1038/311374a0


70.
McGrath J, Solter D: Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 1984;37:179-183. doi: 10.1016/0092-8674(84)90313-1


71.
Surani M, Barton SC, Norris M: Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 1984;308:548-550. doi: 10.1038/308548a0


72.
Hirayama H, Moriyasu S, Kageyama S, et al: Enhancement of maternal recognition of pregnancy with parthenogenetic embryos in bovine embryo transfer. Theriogenology 2014;81:1108-1115. doi: 10.1016/j.theriogenology.2014.01.039


73.
D’Occhio MJ, Baruselli PS, Campanile G: Influence of nutrition, body condition, and metabolic status on reproduction in female beef cattle: a review. Theriogenology 2019;125:277-284. doi: 10.1016/j.theriogenology.2018.11.010


74.
Caton JS, Crouse MS, McLean KJ, et al: Maternal periconceptual nutrition, early pregnancy, and developmental outcomes in beef cattle. J Anim Sci 2020;98:skaa358. doi: 10.1093/jas/skaa358


75.
National Academies of Sciences, Engineering, and Medicine. Nutrient Requirements of Beef Cattle: Eighth Revised Edition. Washington, DC: The National Academies Press; 2016. doi: 10.17226/19014


76.
de Moraes FLZ, Morotti F, Costa CB, et al: Relationships between antral follicle count, body condition, and pregnancy rates after timed-AI in Bos indicus cattle. Theriogenology 2019;136:10-14. doi: 10.1016/j.theriogenology.2019.06.024


77.
Klein J, Adams S, De Moura A, et al: Productive performance of beef cows subjected to different nutritional levels in the third trimester of gestation. Animal 2021;15:100089. doi: 10.1016/j.animal.2020.100089


78.
Hansen P, Drost M, Rivera R, et al: Adverse impact of heat stress on embryo production: causes and strategies for mitigation. Theriogenology 2001;55:91-103. doi: 10.1016/S0093-691X(00)00448-9


79.
Silva C, Sartorelli E, Castilho A, et al: Effects of heat stress on development, quality and survival of Bos indicus and Bos taurus embryos produced in vitro. Theriogenology 2013;79:351-357. doi: 10.1016/j.theriogenology.2012.10.003


80.
Van Loo H, Pascottini OB, Ribbens S, et al: Retrospective study of factors associated with bovine infectious abortion and perinatal mortality. Prev Vet Med 2021;191:105366. doi: 10.1016/j.prevetmed.2021.105366


81.
Mee JF: Invited review: bovine abortion-incidence, risk factors and causes. Reprod Domest Anim 2023;58:23-33. doi: 10.1111/rda.14366
Published
2025-02-10
How to Cite
Poliakiwski B., Smith D., Seekford Z., & Pohler K. (2025). Highlighting factors contributing to pregnancy loss in beef cattle. Clinical Theriogenology, 17. https://doi.org/10.58292/CT.v17.11037
Section
Review Reports