Role of trace minerals in cow’s reproductive function and performance: a clinical theriogenology perspective

  • Roberto Palomares Group for Reproduction in Animals, Vaccinology & Infectious Diseases (GRAVID™), College of Veterinary Medicine, University of Georgia, Athens, GA, USA; and Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
  • Maria Ferrer Group for Reproduction in Animals, Vaccinology & Infectious Diseases (GRAVID™), College of Veterinary Medicine, University of Georgia, Athens, GA, USA; and Department of Large Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
  • Lee Jones Boehringer-Ingelheim Animal Health, Duluth GA, USA
Keywords: Trace minerals, supplementation, cattle, reproduction

Abstract

Trace minerals (TM) have a crucial role in cattle reproduction. Although microelements are required in small amounts, their bioavailability is essential for the cow reproductive physiology, and for adequate fertility and productivity. They are particularly important for antioxidant protection against cellular damage (e.g. gametes and embryonic cells), hormone synthesis, and pregnancy maintenance. Oral TM supplementation is a common and highly recommended management practice in cattle operations. However, there is substantial variability in TM bioavailability in animals receiving oral TM supplementation. The strategic use of injectable TM supplementation (without replacing traditional oral TM supplements) before episodes of marked stress (e.g. parturition), higher metabolic demand with TM depletion (e.g. last trimester of pregnancy), active immune response (e.g. uterine involution or vaccination), and before breeding helps to maintain adequate TM and oxidative status during critical points of the reproductive program. This manuscript reviews the research-based evidence regarding the effects of TM supplementation on bovine reproduction and its impact on beef and dairy cattle reproductive performance.

Downloads

Download data is not yet available.

References


1.
Lean IJ, Van Saun R, DeGaris PJ: Energy and protein nutrition management of transition dairy cows. Vet Clin Food Anim 2013;29:337-366. doi: 10.1016/j.cvfa.2013.03.005


2.
Tomlinson DJ, Socha MT, DeFrain JM: Role of trace minerals in the immune system. In: Proceedings of the 2008 Penn State Dairy Cattle Nutrition Workshop, November 12-13. Grantville, PA. p. 39-52.


3.
Haase H, Rink L: Multiple impacts of zinc on immune function. Metallomics 2014;6:1175-1180. doi: 10.1039/c3mt00353a


4.
Davis GK, Mertz W: Copper. In: Trace Elements in Human and Animal Nutrition, Mertz W: editor. 5th edition, San Diego; Academic Press: 1987. p. 301-364.


5.
Hambidge KM, Casey CE, Krebs NF: Zinc. In: Trace Elements in Human and Animal Nutrition, Mertz W: editor. 1986; 4th edition, San Diego; Academic Press: 1986. p. 1-37.


6.
Hidiroglou M: Manganese in ruminant nutrition. Can J Anim Sci 1979;59:217-236. doi: 10.4141/cjas79-028


7.
Hurley LS, Keen CL: Manganese. In: Mertz W: editor. Trace Elements in Human and Animal Nutrition. 5th edition, San Diego, CA; Academic Press: 1987. p. 185-223.


8.
Hostetler CE, Kincaid RL, Mirando MA: The role of essential trace elements in embryonic and fetal development in livestock. Vet J 2003;166:125-139. doi: 10.1016/s1090-0233(02)00310-6


9.
Sager B, Van Saun RJ: Trace mineral supplementation for beef cows: dry range environment. Vet Clin Food Anim 2023;39:471-489. doi: 10.1016/j.cvfa.2023.08.012


10.
Machado VS, Bicalho ML, Pereira RV, et al: Effect of an injectable trace mineral supplement containing selenium, copper, zinc, and manganese on the health and production of lactating Holstein cows. Vet J 2013;197:451-456. doi: 10.1016/j.tvjl.2013.02.022


11.
Machado VS, Oikonomou G, Lima SF, et al: The effect of injectable trace minerals (selenium, copper, zinc, and manganese) on peripheral blood leukocyte activity and serum superoxide dismutase activity of lactating Holstein cows. Vet J 2014;200:299-304. doi: 10.1016/j.tvjl.2014.02.026


12.
Silva TH, Guimaraes I, Menta PR, et al: Effect of injectable trace mineral supplementation on peripheral polymorphonuclear leukocyte function, antioxidant enzymes, health, and performance in dairy cows in semi-arid conditions. J Dairy Sci 2022;105:1649-1660. doi: 10.3168/jds.2021-20624


13.
Mundell LR, Jaeger JR, Waggoner JW, et al: Effects of prepartum and postpartum bolus injections of trace minerals on performance of beef cows and calves grazing native range. Appl Anim Sci 2012;28:82-88. doi: 10.15232/S1080-7446(15)30318-1


14.
Vedovatto M, Moriel P, Cooke RF, et al: Effects of a single trace mineral injection at beginning of fixed-time AI treatment regimen on reproductive function and antioxidant response of grazing Nellore cows. Anim Reprod Sci 2019;211:106234:1-8. doi: 10.1016/j.anireprosci.2019.106234


15.
Sales JN, Pereira RV, Bicalho RC, et al: Effect of injectable copper, selenium, zinc and manganese on the pregnancy rate of crossbred heifers (Bos indicus × Bos taurus) synchronized for timed embryo transfer. Livest Sci 2011;142:59-62. doi: 10.1016/j.livsci.2011.06.014


16.
Vanegas JA, Reynolds J, Atwill1 ER: Effects of an injectable trace mineral supplement on first-service conception rate of dairy cows. J Dairy Sci 2004;87:3665-3671. doi: 10.3168/jds.S0022-0302(04)73505-5


17.
Stokes RS, Ralph AR, Mickna AJ, et al: Effect of an injectable trace mineral at the initiation of a 14 day CIDR protocol on heifer performance and reproduction. Anim Sci 2017;1:458-466. doi: 10.2527//tas2017.0050


18.
Sheldon IM: The postpartum uterus. Vet Clin North Am Food Anim Pract 2004;20:569-591. doi: 10.1016/j.cvfa.2004.06.008


19.
Dadarwal D, Palmer C, Griebel P: Mucosal immunity of the postpartum bovine genital tract. Theriogenology 2017;104:62-71. doi: 10.1016/j.theriogenelogy.2017.08.010


20.
Walusimbi SS, Pate JL: Physiology and endocrinology symposium: role of immune cells in the corpus luteum. J Anim Sci 2013;91:1650-1659. doi: 10.2527/jas.2012-6179


21.
Farias-Fiorenza M, Amaral CS, Anunciação ARA, et al: Possible impact of neutrophils on immune responses during early pregnancy in ruminants. Anim Reprod 2021;18:e20210048. doi: 10.1590/1984-3143-AR2021-0048


22.
Corbeil LB, Bon Durant RH: Immunity to bovine reproductive infections. Vet Clin North Am Food Anim Pract 2001;17:567-583. doi: 10.1016/s0749-0720(15)30007-4


23.
Mordak R, Stewart PA: Periparturient stress and immune suppression as a potential cause of retained placenta in highly productive dairy cows: examples of prevention. Acta Vet Scand 2015;57:84. doi: 10.1186/s13028-015-0175-2


24.
Klaus L Ingvartsen KL, Moyes KM: Factors contributing to immunosuppression in the dairy cow during the periparturient period. Jpn J Vet Res 2015;63:15-24. PMID: 25872323


25.
Palomares RA: Trace minerals supplementation with great impact on beef cattle immunity and health. Animals 2022;12:2839:1-21. doi: 10.3390/ani12202839


26.
Sordillo LM, Aitken SL: Impact of oxidative stress on the health and immune function of dairy cattle. Vet Immunol Immunopathol 2009;128:104-109. doi: 10.1016/j.vetimm.2008.10.305


27.
Aurousseau B, Gruffat D, Durand D: Gestation linked radical oxygen species fluxes and vitamins and trace mineral deficiencies. Reprod Nutr Dev 2006;46:601-620. doi: 10.1051/rnd:2006045


28.
Spears JW, Weiss WP: Role of antioxidants and trace elements in health and immunity of transition dairy cows. Vet J 2008;176:70-76. doi: 10.1016/j.tvjl.2007.12.015


29.
Bernabucci U, Ronchi B, Lacetera N, et al: Influence of body condition score on relationships between metabolic status and oxidative stress in periparturient dairy cows. Dairy Sci 2005;88:2017-2026. doi: 10.3168/jds.S0022-0302(05)72878-2


30.
Castillo C, Hernandez J, Bravo A, et al: Oxidative status during late pregnancy and early lactation in dairy cows. Vet J 2005;169:286-292. doi: 10.1016/j.tvjl.2004.02.001


31.
Michiels C, Raes M, Toussaint O, et al: Importance of Se-glutathione peroxidase, catalase, and Cu/Zn-SOD for cell survival against oxidative stress. Free Radic Biol Med 1994;17:235-248. doi: 10.1016/0891-5849(94)90079-5


32.
Andrieu S: Is there a role for organic trace element supplements in transition cow health? Vet J 2008;176:77-83. doi: 10.1016/j.tvjl.2007.12.022


33.
Abuelo A, Hernández J, Benedito JL, et al: Immunity to bovine reproductive infections. The importance of the oxidative status of dairy cattle in the periparturient period: revisiting antioxidant supplementation. Anim Physiol Anim Nutr 2015;99:1003-1016. doi: 10.1111/jpn.12273


34.
Bonaventura P, Benedetti G, Albarède F, et al: Zinc and its role in immunity and inflammation. Autoimmun Rev 2015;14:277-285. doi: 10.1016/j.autrev.2014.11.008


35.
Wilde D: Influence of macro and micro minerals in the peri-parturient period on fertility in dairy cattle. Anim Reprod Sci 2006;96:240-249. doi: 10.1016/j.anireprosci.2006.08.004


36.
Tomlinson DJ, Mülling CH, Fakler TM: Formation of keratins in the bovine claw: roles of hormones, minerals, and vitamins in functional claw integrity. J Dairy Sci 2004;87:797-809. doi: 10.3168/jds.S0022-0302(04)73223-3


37.
Capuco AV, Wood D, Bright SA, et al: Regeneration of teat canal keratin in lactating dairy cows. J Dairy Sci 1990;73:1745-1750. doi: 10.3168/jds.S0022-0302(90)78851-0


38.
Zhang X, Hou Y, Huang Y, et al: Interplay between zinc and cell proliferation and implications for the growth of livestock. Anim Physiol Anim Nutr 2023;107:1402-1418. doi: 10.1111/jpn.13851


39.
Spears JW: Micronutrients and immune function in cattle. Proc Nutr Soc 2000;59:587-594. doi: 10.1017/s0029665100000835


40.
Failla ML: Trace elements and host defense: recent advances and continuing challenges. J Nutr 2003;133:1443S-1447S. doi: 10.1093/jn/133.5.1443S


41.
Puertollano MA, Puertollano E, de Cienfuegos GÁ, et al: Dietary antioxidants: immunity and host defense. Curr Top Med Chem 2011;11:1752-1766. doi: 10.2174/156802611796235107


42.
Wang C, Liu X, Liu Y, et al: Zinc finger protein 64 promotes Toll-like receptor-triggered proinflammatory and type I interferon production in macrophages by enhancing p65 subunit activation. J Biol Chem 2013;288:24600-24608. doi: 10.1074/jbc.M113.473397


43.
Abbas AK, Lichtman AH: Innate immunity. In: Cellular and Molecular Immunology. 9th edition, Philadelphia, PA; Saunders Elsevier: 2018. p. 275-297.


44.
Percival SS: Copper and immunity. Am J Clin Nutr 1998;67:1064S-1068S. doi: 10.1093/ajcn/67.5.1064S


45.
Maddox JF, Aherne KM, Reddy CC, et al: Increased neutrophil adherence and adhesion molecule mRNA expression in endothelial cells during selenium deficiency. J Leukoc Biol 1999;65:658-664. doi: 10.1002/jlb.65.5.658


46.
Brzezinska-Slebodzinska E, Miller JK, Quigley JD, et al: Antioxidant status of dairy cows supplemented prepartum with vitamin E and selenium. J Dairy Sci 1994;77:3087-3095. doi: 10.3168/jds.S0022-0302(94)77251-9


47.
Basini G, Tamanini C: Selenium stimulates estradiol production in bovine granulosa cells: possible involvement of nitric oxide. Domest Anim Endocrinol 2000;18:1-17. doi: 10.1016/s0739-7240(99)00059-4


48.
Fujii J, Iuchi Y, Okada F: Fundamental roles of reactive oxygen species and protective mechanisms in the female reproductive system. Reprod Biol Endocrinol 2005;3:43.1-10 doi: 10.1186/1477-7827-3-43


49.
Picco SJ, Rosa DE, Anchordoquy JP, et al: Effects of copper sulphate concentrations during in vitro maturation of bovine oocytes. Theriogenology 2012;77:373-381. doi: 10.1016/j.theriogenology.2011.08.009


50.
Anchordoquy JP, Anchordoquy JM, Sirini MA, et al: Effect of different manganese concentrations during in vitro maturation of bovine oocytes on DNA integrity of cumulus cells and subsequent embryo development. Reprod Domest Anim 2013;48:905-911. doi: 10.1111/rda.12184


51.
Rosa DE, Anchordoquy JM, Anchordoquy JP, et al: Analyses of apoptosis and DNA damage in bovine cumulus cells after in vitro maturation with different copper concentrations: Consequences on early embryo development. Zygote 2016;24:869-879. doi: 10.1017/S0967199416000204


52.
Anchordoquy JM, Anchordoquy JP, Nikolo N, et al: High copper concentrations produce genotoxicity and cytotoxicity in bovine cumulus cells. Environ Sci Pollut Res Int 2017;24:20041-20049. doi: 10.1007/s11356-017-9683-0


53.
Anchordoquy JP, Anchordoquy JM, Sirini MA, et al: The importance of manganese in the cytoplasmic maturation of cattle oocytes: blastocyst production improvement regardless of cumulus cells presence during in vitro maturation. Zygote 2016;24:139-148. doi: 10.1017/S0967199414000823


54.
Rojas MA, Dyer IA, Cassatt WA: Manganese deficiency in the bovine. J Anim Sci 1965;24:664-667. doi: 10.2527/jas1965.243664x


55.
Van Emon M, Sanford C, McCoski S: Impacts of bovine trace mineral supplementation on maternal and offspring production and health. Animals 2020;10:2404. doi: 10.3390/ani10122404


56.
Maywald M, Wessels I, Rink L: Zinc signals and immunity. Int J Mol Sci 2017;18:2222. doi: 10.3390/ijms18102222


57.
Nazari A, Dirandeh E, Ansari-Pirsaraei Z, et al: Antioxidant levels, copper and zinc concentrations were associated with postpartum luteal activity, pregnancy loss and pregnancy status in Holstein dairy cows. Theriogenology 2019;133:97-103. doi: 10.1016/j.theriogenology.2019.04.034


58.
Wooldridge LK, Nardi ME, Ealy AD: Zinc supplementation during in vitro embryo culture increases inner cell mass and total cell numbers in bovine blastocysts. J Anim Sci 2019;97:4946-4950. doi: 10.1093/jas/skz351


59.
Hansard SL, Mohammed AS, Turner JW: Gestation age effects upon maternal-fetal zinc utilization in the bovine. J Anim Sci 1968;27:1097-1102. doi: 10.2527/jas1968.2741097x


60.
Sackett R, McCusker RH: Multivalent cations depress ligand affinity of insulin-like growth factor-binding proteins-3 and -5 on human GM-10 fibroblast cell surfaces. J Cel Biochem 1998;69:364-375. doi: 10.1002/(SICI)1097-4644(19980601)69:3<364::AID-JCB13>3.0.CO;2-C


61.
McCusker RH, Kaleko M, Sackett RL: Multivalent cations and ligand affinity of the Type 1 insulin-like growth factor receptor on P2A2-LISN muscle cells. J Cell Phys 1998;176:392-401. doi: 10.1002/(SICI)1097-4652(199808)176:2<392::AID-JCP18>3.0.CO;2-5


62.
Freedman LP: Anatomy of the steroid receptor zinc finger region. Endocr Rev 1992;13:129-145. doi: 10.1210/edrv-13-2-129


63.
Picco SJ, Anchordoquy JM, de Matos DG, et al: Effect of increasing zinc sulphate concentration during in vitro maturation of bovine oocytes. Theriogenology 2010;74:1141-1148. doi: 10.1016/j.theriogenology.2010.05.015


64.
Zhang N, Duncan FE, Que EL, et al: The fertilization-induced zinc spark is a novel biomarker of mouse embryo quality and early development. Sci Rep 2016;6:22772. doi: 10.1038/srep22772. PMID: 26987302


65.
Que EL, Duncan FE, Lee HC, et al: Bovine eggs release zinc in response to parthenogenetic and sperm-induced egg activation. Theriogenology 2019;127:41-48. doi: 10.1016/j.theriogenology.2018.12.031


66.
Burk RF: Molecular biology of selenium with implications for its metabolism. FASEB J 1991;5:2274-2279. doi: 10.1096/fasebj.5.9.1830557


67.
Ceko MJ, Hummitzsch K, Hatzirodos N, et al: X-Ray fluorescence imaging and other analyses identify selenium and GPX1 as important in female reproductive function. Metallomics 2015;7:66-77. doi: 10.1039/c4mt00228h


68.
Kommisrud E, Osterås O, Vatn T: Blood selenium associated with health and fertility in Norwegian dairy herds. Acta Vet Scand 2005;46:229-240. doi: 10.1186/1751-0147-46-229


69.
Van Saun RJ, Herdt TH, Stowe HD: Maternal and fetal selenium concentrations and their interrelationships in dairy cattle. J Nutr 1989;119:1128-1137. doi: 10.1093/jn/119.8.1128


70.
Lequarré AS, Feugang JM, Malhomme O, et al: Expression of Cu/Zn and Mn superoxide dismutase during bovine embryo development: influence of in vitro culture. Mol Reprod Dev 2001;58:45-53. doi: 10.1002/1098-2795(200101)58:1<45::AID-MRD7>3.0.CO;2-J


71.
Hidiroglou M, Shearer DA: Concentration of manganese in the tissues of cycling and anestrous ewes. Can J Comp Med 1976;40:306-309. PMCID: PMC1277770


72.
Wilson JG: Bovine functional infertility in Devon and Cornwall–response to manganese therapy. Vet Rec 1966;79:562-566. doi: 10.1039/c4mt00228h


73.
Trumbo P, Yates AA, Schlicker S, et al: Dietary reference intakes: vitamin a, vitamin k, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. J Am Diet Assoc 2001;101:294-301. doi: 10.17226/10026


74.
Rhinehart JD, Starbuck-Clemmer MJ, Flores JA, et al: Low peripheral progesterone and late embryonic/early fetal loss in suckled beef and lactating dairy cows. Theriogenology 2009;71:480-490. doi: 10.1016/j.theriogenology.2008.07.031


75.
Leach Jr, RM: Role of manganese in the synthesis of mucopolysaccharides. Fed Proc 1967;26:118-120.


76.
Hansen SL, Spears JW, Lloyd KE, et al: Growth, reproductive performance, and manganese status of heifers fed varying concentrations of manganese. J Anim Sci 2006;84:3375-3380. doi: 10.2527/jas.2005-667


77.
Hansen SL, Spears JW, Lloyd KE, et al: Feeding a low manganese diet to heifers during gestation impairs fetal growth and development. J Dairy Sci 2006;89:4305-4311. doi: 10.3168/jds.S0022-0302(06)72477-8


78.
Schwertz CI, Bianchi RM, Vielmo A, et al: Nutritional chondrodysplasia in cattle in Brazil. Trop Anim Health Prod 2022;55:26. doi: 10.1007/s11250-022-03438-7


79.
Corah LR, Dargatz D: Forage Analyses from Cow/Calf Herds in 18 States. Beef. Chapa. Cow Calf Health and Productivity Audit. Fort Collins CO: USDA: APHIS: VS, National Animal Health Monitoring System: 1996.


80.
Herdt TH, Hoff B: The use of blood analysis to evaluate trace mineral status in ruminant livestock. Vet Clin North Am Food Anim Pract 2011:27:255-283. doi: 10.1016/j.cvfa.2011.02.004


81.
National Academies of Sciences, Engineering, and Medicine: Nutrient Requirements of Beef Cattle. 8th edition, Washington, DC, USA; Subcommittee on Beef Cattle Nutrition, Committee on Animal Nutrition, Board on Agriculture, National Research Council. National Academy Press: 2016. doi: 10.17226/19398


82.
Mortimer RG, Dargatz DA, Corah LR: Forage Analyses from Cow/Calf Herds in 23 States. Report: NAHMS Beef 1997. Fort Collins CO: USDA; 1999.


83.
Rink L, Gabriel P: Zinc and the immune system. Proc Nutr Soc 2000;59:541-552. doi: 10.1017/s0029665100000781


84.
Reffett JK, Spears JW, Brown TT: Effect of dietary selenium on the primary and secondary immune response in calves challenged with infectious bovine rhinotracheitis virus. J Nutr 1988;118:229-235. doi: 10.1093/jn/118.2.229


85.
Enjalbert F, Lebreton P, Salat OJ: Effects of copper, zinc and selenium status on performance and health in commercial dairy and beef herds: Retrospective study. Anim Physiol Anim Nutr 2006;90:459-466. doi: 10.1111/j.1439-0396.2006.00627.x


86.
Graham TW, Thurmond MC, Gershwin ME, et al: Serum zinc and copper concentrations in relation to spontaneous abortion in cows: implications for human fetal loss. J Reprod Fert 1994;102:253-262. doi: 10.1530/jrf.0.1020253


87.
Segerson Jr, EC, Murray FA, Moxon AL, et al: Selenium/vitamin E: role in fertilization of bovine ova. J Dairy Sci 1977;60:1001-1005. doi: 10.3168/jds.S0022-0302(77)83978-7


88.
Hedstrom OR, Maas JP, Hultgren BD, et al: Selenium deficiency in bovine, equine, and ovine with emphasis on its association with chronic diseases. In: Proceedings of the 29th Annual Meeting of the American Association of Veterinary Laboratory Diagnosticians, 1986; p. 101-126. doi: 10.1016/S0749-0720(15)30034-7


89.
Yamini B, Mullaney TP: Vitamin E and selenium deficiency as a possible cause of abortion in food animals. In: Proceedings of the 28th Annual Meeting of the American Association of Veterinary Laboratory Diagnosticians, p. 131-144. doi: 10.1016/S0749-0720(15)30034-7


90.
D’Aleo J, Shelford A, Fisher LJ: Selenium-sulphur interactions and their influence on fertility in dairy cattle. Can J Anim Sci 1983;63:999. In: Proceedings of the Annual Meeting of the Canadian Society of Animal Science. Nova Scotia Agricultural College, Truro, N.S., B2N 5E3 July 1983. doi: 10.4141/cjas83-116


91.
Harrison JH, Conrad HR: Effect of selenium intake on selenium utilization by the nonlactating dairy cow. J Dairy Sci 1984;67:219-223. doi: 10.3168/jds.S0022-0302(84)81288-6


92.
Harrison JH, Hancock DD: The role of selenium and Vitamin E deficiency in postpartum reproductive disease of the bovine. In: Hogan, J: editor. Proceedings of the Alvin Lloyd Moxon Honorary Lectures on Selenium and Vitamin E. Wooster, OH; The Ohio State University, Ohio Agricultural Research and Development Center: 1999.


93.
Sordillo LM: Selenium-dependent regulation of oxidative stress and immunity in periparturient dairy cattle. Vet Med Int 2013;2013:154045. doi: 10.1155/2013/154045


94.
Milatovic D, Gupta RC: Manganese In: Gupta RC: editor. Veterinary Toxicology: Basic and Clinical Principles, 3rd edition. Cambridge; Academic Press: 2018. p. 445-454.


95.
Bazhora II, Shtefan EE, Timoshevskiĭ VN: The effect of microelements-copper, manganese and cobalt--on the antibody forming function of lymphoid tissue. Mikrobiol Zh 1974;36:771-776. PMID: 4475360


96.
Dyer IA, Cassatt Jr, WA, Rao RR: Manganese deficiency in the etiology of deformed calves. BioScience 1964;14:31-32. doi: 10.2307/1293356


97.
Hidiroglou M, Ivan M, Bryan MK, et al: Assessment of the role of manganese in congenital joint laxity and dwarfism in calves. Ann Rech Vet 1990;21:281-284. PMID: 2288454.


98.
Boland MP, O’Donnell G, O’Callaghan D: The contribution of mineral proteinates to production and reproduction in dairy cattle. Biotechnology in the Feed Industry. In: Lyons TP, Jaques K: editors. Proceedings of the 12th Annual Symposium. Nottingham; University Press: 1996. p. 95-103.


99.
Ballantine HT, Socha MT, Tomlinson DJ, et al: Effects of feeding complexed zinc, manganese, copper and cobalt to late gestation and lactating dairy cows on claw integrity, reproduction and lactation performance. Prof Anim Sci 2002;18:211-218. doi: 10.15232/S1080-7446(15)31524-2


100.
Rabiee AR, Lean IJ, Stevenson MA, et al: Effects of feeding organic trace minerals on milk production and reproductive performance in lactating dairy cows: a meta-analysis. J Dairy Sci 2010;93:4239-4251. doi: 10.3168/jds.2010-3058


101.
Kinal S, Korniewicz A, Jamroz D, et al: Dietary effects of zinc, copper and manganese chelates and sulphates on dairy cows. J Food Agric Environ 2005;3:168-172.


102.
Ahola JK, Baker DS, Burns PD, et al: Effect of copper, zinc, and manganese supplementation and source on reproduction, mineral status, and performance in grazing beef cattle over a two-year period. Affiliations expand. J Anim Sci 2004;82:2375-2383. doi: 10.2527/2004.8282375x


103.
Campbell MH, Miller JK, Schrick FN: Effect of additional cobalt, copper, manganese and zinc on reproduction and milk yield of lactating dairy cows receiving bovine somatotropin. J Dairy Sci 1999;2:1019-1025. doi: 10.3168/jds.S0022-0302(99)75322-1


104.
Arthington JD, Larson RL, Corah LR: The effects of slow-release copper boluses on cow reproductive performance and calf growth. Prof Anim Sci 1995;11:219-222. doi: 10.15232/S1080-7446(15)31907-0


105.
Muehlenbein EL, Brink DR, Deutscher GH, et al: Effect of inorganic and organic copper supplemented to first-calf cows on cow reproduction and calf health and performance. J Anim Sci 2001;79:1650-1659. doi: 10.2527/2001.7971650x


106.
Lamb GC, Brown DR, Larson JE, et al: Effect of organic or inorganic trace mineral supplementation on follicular response, ovulation, and embryo production in super ovulated Angus heifers. Anim Reprod Sci 2008;106:221-231. doi: 10.1016/j.anireprosci.2007.04.007


107.
Dufty JH, Bingley JB, Cove LY: The plasma zinc concentration of nonpregnant, pregnant and parturient Hereford cattle. Aust Vet J 1977;53:519-522. doi: 10.1111/j.1751-0813.1977.tb07935.x


108.
Pryor WJ: Plasma zinc status of dairy cattle in the periparturient period. N Z Vet J 1976;24:57-58. doi: 10.1080/00480169.1976.34283


109.
Jackson TD, Carmichael RN, Deters EL, et al: Comparison of multiple single-use, pulse-dose trace mineral products provided as injectable, oral drench, oral paste, or bolus on circulating and liver trace mineral concentrations of beef steers. Appl Anim Sci 2019;36:26-35. doi: 10.15232/aas.2019-01856


110.
Pogge DJ, Richter EL, Drewnoski ME, et al: Mineral concentrations of plasma and liver after injection with a trace mineral complex differ among Angus and Simmental cattle. J Anim Sci 2012;90:2692-2698. doi: 10.2527/jas.2012-4482


111.
Arthington JD, Swenson CK: Effects of trace mineral source and feeding method on the productivity of grazing Braford cows. Prof Anim Sci 2004;20:155-161. doi: 10.15232/S1080-7446(15)31290-0


112.
Genther ON, Hansen SL: A multielement trace mineral injection improves liver copper and selenium concentrations and manganese superoxide dismutase activity in beef steers. J Anim Sci 2014;92:695-704. doi: 10.2527/jas.2013-7066


113.
Renteria I, Bo G, Prado J, et al: Effects of trace mineral administration on pregnancy rate of multiparous cows submitted to fixed-time artificial insemination. In: Maraña D: editors. 7th International Symposium of Advances on Bovine Reproduction. Jalisco; Ovusem Guadalajara: July 2022. p. 267.


114.
Perry GA, Perkins SD, Northrop EJ, et al: Impact of trace mineral source on beef replacement heifer growth, reproductive development, and biomarkers of maternal recognition of pregnancy and embryo survival. J Anim Sci 2021;99:160. doi: 10.1093/jas/skab160


115.
Dantas FG, Reese ST, Filho RV, et al: Effect of complexed trace minerals on cumulus-oocyte complex recovery and in vitro embryo production in beef cattle. J Anim Sci 2019;97:1478-1490. doi: 10.1093/jas/skz005


116.
Gao G, Yi J, Zhang M, et al: Effects of iron and copper in culture medium on bovine oocyte maturation, preimplantation embryo development, and apoptosis of blastocysts in vitro. J Reprod Dev 2007;53:777-784. doi: 10.1262/jrd.18109


117.
Anchordoquy JM, Picco SJ, Seoane A, et al: Analysis of apoptosis and DNA damage in bovine cumulus cells after exposure in vitro to different zinc concentrations. Cell Biol Int 2011;35:593-597. doi: 10.1042/CBI20100507


118.
Lizarraga RM, Anchordoquy JM, Galarza EM, et al: Sodium selenite improves in vitro maturation of Bos primigenius taurus Oocytes. Biol Trace Elem Res 2020;197:149-158. doi: 10.1007/s12011-019-01966-2


119.
Anchordoquy JP, Balbi M, Farnetano MA, et al: Trace mineral mixture supplemented to in vitro maturation medium improves subsequent embryo development and embryo quality in cattle. Vet Res Com 2022;46:1111-1119. doi: 10.1007/s11259-022-09982-9
Published
2024-11-13
How to Cite
Palomares R., Ferrer M., & Jones L. (2024). Role of trace minerals in cow’s reproductive function and performance: a clinical theriogenology perspective. Clinical Theriogenology, 16. https://doi.org/10.58292/CT.v16.10529
Section
Review Reports