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Abstract

Animal andrology has benefitted by flow cytometry use (to analyze various sperm components). Examples include its use to 
explore DNA intactness, to sort sperm for chromosomal sex, or to explore via suitable fluorophores the functional intactness of 
essential attributes (e.g. plasma membrane). These explorations can provide the clinician with evidence of the extent of cell death, 
a major variable in using semen for breeding. Such gains have evolved over the past decade(s) through the production of versatile 
markers, including biomarkers, the design of simpler protocols, and the availability of more user-friendly and less expensive bench-
flow cytometers. The present review summarizes the current state of flow cytometry use within animal andrology. It attempts to be 
critical of research gains, separating them for clinical relevance and focusing on its use to examine the early events that occur in the 
labile sperm plasma membrane (leading to cell death) – a most relevant marker for clinical decisions during diagnosis and prog-
nosis of fertility when using ejaculated sperm (either unprocessed or processed) for cooling, freezing, or sperm sorting for in vitro 
fertilization or artificial insemination.
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Introduction

Clinical veterinary andrology attempts to assess the health of 
a breeding male. It certainly includes examination of genital 
organs, the ability to mate, and a thorough examination of 
collected semen, pursuing a species-specific general breeding 
soundness evaluation.1 Decades of animal selection and 
dedicated clinical work have yielded substantial knowledge 
for early identification of potentially infertile sires, prevent-
ing their use for the widespread and most successful  
reproductive biotechnology, artificial insemination (AI). 
Furthermore, laboratory examination of semen has provided 
steady support for accurate diagnoses, particularly when 
novel methods and equipment have been presented.2 Despite 
methods for assessing semen normality and, particularly, 
sperm structure and function have been a target for andro-
logical and spermatological research, the conventional  
evaluation of the ejaculate made by most clinicians has been 
restricted to determinations of sperm number, motility, and 
very seldom, morphology.3–5 This slim battery of semen 
parameters has historically been considered sufficient to 

potentially separate fertile from infertile.6 Yet, the propor-
tion of subfertile sires is still sufficiently high to cause losses 
on the level of billions of Euros or Dollars, yearly. These 
losses are often recognized too late, either when conception 
is clinically assessed, when nonreturn figures are indirectly 
measured, or when offspring is absent or lower than 
expected. Although sire fertility is evidently a limiting factor, 
most fertility research seldom focuses on the male or the 
quality of the used sperm.6 One of the reasons behind is that 
although sperm biomarkers related to fertility exist, their use 
by the clinician is still burdened by requirements of high 
technical know-how, expensive instrumentation, and the 
inability of the researchers to communicate their diagnostic 
value, mostly due to insufficient standardization of valuable 
protocols since the use flow cytometry is becoming common 
in established companies.6 Another factor to consider is the 
complex nature of fertility depending on numerous factors 
and their interactions.2,6,7 

Innumerable methods are now available for semen/sperm 
evaluation, including those examining the capability of sperm 
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to interact with the surrounding fluids (seminal plasma, intra-
lumenal female genital fluids and extension artificial media 
we use for preservation, in vitro culture, and sorting), the lin-
ing epithelia of the internal female tract, or the coatings of the 
oocyte.8–11 Currently, we can explore not only sperm plasma 
membrane status, various sperm organelles, sperm genome, 
and its transcriptome but also the capacity of sperm to fertilize 
and to initiate early embryo development in vitro.12–17 In addi-
tion, we are helped by several computer-assisted motility ana-
lyzers, of morphology screeners, and by flow cytometers of 
various complexity (and cost), including cutting-edge image-
based fluorescence correlation spectroscopy for high-through-
put cell image acquisition.6,18–20 Authors advise the readers to 
be acquainted with some of the excellent reviews available to 
grasp this development.20,21 For the clinician, perhaps the most 
relevant take-home message is to remember that sperm are 
highly differentiated cells, programmed to interact and react 
to the environment and prompt to suffer changes that inexo-
rably lead to sperm death, and hence inability to participate in 
fertilization, and perhaps, to cause deleterious changes in the 
accompanying sperm.22 Our intention with this review is to 
remind the clinician of the basic and essential diagnostic val-
ues of determining the percentages of live sperm in the sample 
for its fate. This concept that calls for methods that can iden-
tify sperm changes before death is established, considering 
sperm death is irreversible. Although the integrity of the 
plasma membrane is rapidly lost when necrotic cell death 
occurs, subtle changes characterize other forms of sperm 
demise. Numerous flow cytometry (FC) protocols have been 
developed to identify necrotic sperm and also various degrees 
of plasma membrane alteration occurring prior to sperm 
death.23–27 In this paper, we provide an update on the various 
forms of death in sperm, and how these forms are reflected on 
various FC protocols, establishing a critical review of the cur-
rent methods for the determination of the integrity and func-
tionality of sperm plasma membrane. A particular call is made 
for the value of using multiparametric FC that, aided by com-
putational analysis (Cytobank), can simultaneously identify 
multiple forms of sperm damage. Although these multiple 
commercial bench-top FCs are available, the authors recom-
mend the use of modern equipment with upgrade possibility 
(e.g. activation of new lasers), and having a friendly and open 
software.

Necrosis/apoptosis/ferroptosis/spermptosis/
premature capacitation

Although the existence of classical necrosis in sperm is 
widely accepted, the presence of various forms of pro-
grammed cell death has been under debate. The transcrip-
tionally silent nature of sperm has been claimed to make 
programmed forms of cell death unlikely in these cells; how-
ever, currently, it is considered that sperm are programmed 
for cell death as a measure to promote the silent removal  
of redundant sperm for the female reproductive tract.28 
Moreover, although protein synthesis in sperm is negligible, 
the incorporation of new proteins through microvesicle traf-
ficking and, especially, posttranslational modifications of 
existing proteins modulate sperm function. Despite all 
sperm are activated through cell death, this may occur at var-
ious velocities and factors, i.e. oxidative stress, triggering and 
accelerating the process. Although the terms programmed 
cell death and apoptosis have been used indistinctly, these 
terms are not synonymous. Various forms of programmed 
cell death may share similar molecular mechanisms; how-
ever, all these forms are not identical. Necrosis is character-
ized by a rapid loss of membrane integrity. However, in 

various forms of programmed cell death, more subtle 
changes occur, especially in a cell as highly specialized as 
sperm. Capacitation is the maturational process that sensi-
tizes sperm to recognize and fertilize the oocyte; this process 
causes substantial plasma membrane modifications. 
Capacitation involves the removal of cholesterol from the 
plasma membrane, removal of coating materials from the 
membrane, a rise in intracellular Ca2+, an increase in intracel-
lular cAMP, and a dramatic increase in tyrosine phosphoryla-
tion. Removal of cholesterol from the membrane is preceded 
by its oxidation, stimulated by bicarbonate, and the forma-
tion of oxysterols,29–31 which are depleted from the sperm 
membrane by albumin. The process prepares the sperm to 
fertilize an oocyte; however, most of the sperm in the ejacu-
late will never reach an egg and will die within the female 
reproductive tract and only a small subpopulation of sperm 
fully capacitate,32,33 thus mechanisms for immunologically 
silent elimination of redundant sperm are likely. Capacitation 
shares molecular mechanisms with what begins to be con-
sidered special forms of programmed cell death in sperm: 
redox-regulated, intracellular Ca2+ increase and membrane 
destabilization occur. However, capacitation implies a dra-
matic increase in tyrosine phosphorylation and changes in 
the pattern of motility to hyperactivated motility, whereas 
programmed cell death ends with cessation of any kind of 
motility in sperm. Finally, apoptotic sperm release ‘find- 
me/eat me’ signals to achieve a silent removal of redundant 
sperm. The inhibition of glutathione  peroxidase  4 (GPX4) 
leads to a specific form of cellular demise termed ferropto-
sis.34 This is a form of programmed cell death that is charac-
terized by the failure of glutathione (GSH)-dependent 
antioxidant defenses that can be triggered by the inhibition 
of GPX4 or SLCTA11/xCT, the antiporter that exchanges 
extracellular cystine for intracellular glutamate. Cystine is 
used for GSH synthesis, a mechanism recently described in 
stallion sperm.27,35 It is possible that this form of cell death is 
present in sperm.26 

Induction of apoptosis or necrosis in sperm

If the presence of apoptosis in ejaculated sperm is a remnant 
of spermatogenesis (as stated by the abortive apoptosis the-
ory), most sperm are already programmed to experience pro-
grammed cell death; thus, the concept is that more than 
induced, in sperm, the programmed cell death process can be 
accelerated. However, classical inductors of apoptosis have 
been successfully used in stallion sperm, although betulinic 
acid seems more effective to induce apoptosis than staurospo-
rine or thapsigargin,36 which is in agreement with the predom-
inance on the mitochondrial pathway of apoptosis in sperm.37 

In sperm, cryopreservation has been constantly associated 
with the production of apoptotic changes related to the oxida-
tive stress caused by freezing and thawing.

Changes in the integrity of the plasma membrane

Although the integrity of the plasma membrane is rapidly lost 
when necrotic cell death occurs, subtle changes occur under 
other forms of sperm demise. The traditional approach for the 
determination of viability in sperm biology has been using 
dye exclusion assays; the combination of the permeable DNA 
binding probe SYBR-14 and the impermeable DNA binding 
probe propidium iodide is widely used and is marketed as a 
kit for sperm viability assay. This assay became very popular, 
especially in the veterinary world, since its introduction in the 
early 90s of the past century. This combination was appropri-
ate for the single laser (blue) of the cytometers commonly 
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used in the andrology labs at that time. During the first decade 
of the present century, more sophisticated assays started to be 
introduced in spermatology; these techniques allowed to dis-
close distinct physiological states of the membranes in addi-
tion to necrotic cells, and these assays identified the 
permeability of the membranes, the order of the lipid packag-
ing, the transposition of specific phospholipids, the polarity 
of the membrane, and assays able to identify the peroxidation 
of membrane lipids.

Assays identifying changes in membrane 
permeability

The probe that has gained popularity in the spermatology 
field is YoPro-1. Initially, this probe was used as an alternative 
to red emission viability dyes, when merocyanine-540 was 
used.38–40 However, YoPro-1 not only is able to stain necrotic 
cells but can also use specific channels to cross intact mem-
branes.41–43 Moreover, live sperm may pump out YoPro-1, 
whereas depletion of ATP may result in accumulation of 
YoPro-1 in the sperm.44 This property allows the identification 
of sperm, with intact membranes, but in a compromised phys-
iological situation; therefore, this dye is used to identify apop-
totic cells and to identify increased membrane permeability 
due to lipid peroxidation. An interesting report uses the 
YoPro-1 assay to sort sperm of better quality (low DNA frag-
mentation) in human sperm since DNA fragmentation of the 
DNA in sperm is due to oxidative attack, sperm experiencing 
oxidative stress also have increased membrane permeability,45 
and these sperm can be easily identified and removed.46

Lipid peroxidation of the membrane increases 
membrane permeability: Assays identifying the 
transposition of phospholipids 

Among the changes that oxidative stress induces is the 
increased permeability of the plasmalemma.45 Lipid peroxida-
tion is thus the consequence of oxidative stress and is a chain 
reaction, with peroxidation products created close to each 
other. The identification of the transposition of specific phos-
pholipids from the inner to the outer membrane constitutes  
a classical assay for the detection of apoptotic cells.  
The Annexin-V assay is a popular technique to identify the  
presence of phosphatidylserine (PS) in the outer leaflet of the 
plasmalemma. Under normal conditions, PS and phosphati-
dylethanolamine are present in the interleaflet of the plasma-
lemma. When the cell enters apoptosis, PS translocated to the 
outer membrane constituting an ‘eat me’ signaling (presence 
of PS signals the cells that will be phagocytosed in a silent, 
noninflammatory manner). This is especially important for 
the elimination of redundant sperm from the female genita-
lia, and failure in this mechanism may lead to an uncon-
trolled inflammatory reaction to semen and posterior 
endometritis. 

Polarity of the plasma membrane 

An anionic bis oxonol dye (DiSBAC2)47 enters depolarized 
cells where they bind to the intracellular proteins of mem-
branes and exhibit enhanced fluorescence and red-orange 
spectral shifts. Increased depolarization results in more influx 
of the anionic dye, and thus an increase in fluorescence. 
Conversely, hyperpolarization is indicated by a decrease in flu-
orescence. In contrast to cationic carbocyanines, anionic bis 
oxonols are largely excluded from mitochondria and are pri-
marily sensitive to plasma membrane potential.48 The use of 

flow cytometry allows determining, at the single cell level, 
many distinct characteristics of sperm. Recently, changes in 
the potential of the membrane have been studied in relation 
to capacitation and cryopreservation.33,49 These changes relate 
to modifications in intracellular Na+ that can also be moni-
tored using flow cytometry. The potential of the sperm mem-
brane can be determined with the probe DisBAC2 combined 
with a vitality dye to exclude dead sperm from the analysis. 
Depolarization of the membrane has been reported in rela-
tion to apoptotic changes,49 whereas capacitation is linked to 
hyperpolarization.33 Interestingly, this occurs only in a sub-
population of live, intact acrosome sperm and not in the 
whole ejaculate. Depolarization of the membrane has been 
related to apoptotic changes in somatic cells and in sperm. 
Thus, combined staining has been employed to determine if 
depolarized sperm correspond also to sperm having apoptotic 
features. These experiments demonstrate that depolarized 
sperm are also caspase 3 positive, express PS translocation, 
and have increased intracellular Na+ and collapsed 
mitochondria.49

Active sperm caspases: denouncing sperm senescence 

Senescent sperm express active caspase 3.37,50,51 Depending of 
the presence of prosurvival factors, caspase 3 remains inactive 
due to the phosphorylation of protein kinase B (PKB or 
Akt).43,51,52 If prosurvival factors are lost or oxidative stress 
reaches a threshold, caspase 3 is activated and sperm senes-
cence and death are triggered.37,53 Cryopreservation triggers 
this phenomenon, and surviving sperm experience acceler-
ated senescence.52,54–57 Active caspase 3 can be detected using 
CellEvent Caspase-3 Green Detection Reagent, which consists 
of a four-amino-acid peptide (DEVD) conjugated to a nucleic 
acid-binding dye. This cell-permeant substrate is intrinsically 
nonfluorescent because the DEVD peptide inhibits the ability 
of the dye to bind to DNA. After the activation of caspase 3 in 
apoptotic cells, the DEVD peptide is cleaved, enabling the dye 
to bind to DNA and produce a bright, fluorogenic response 
with an absorption/emission maxima of 502/530 nm.

Flow cytometry data output and clinical 
interpretation

An example (Figure 1) of a multiparametric panel as an out-
put of stallion sperm studied with a modern flow cytometer 
(Cytoflex LX), providing data relevant for the clinician to eval-
uate the current and potential status of a semen sample. 
Description of this four-color experiment implies that the 
information provided has to be depicted in several dot plots 
since the number of 2D plots increases exponentially with the 
number of colors in the analysis. Additionally, the establish-
ment of gates is performed manually. These are confounding 
data for a nonspecialist and ought to be simplified without 
losing relevant information, for instance, using self-learning 
artificial intelligence techniques. An example of such is pre-
sented (Figure 2), using the Flo self-organizing maps for visu-
alization and organization of flow cytometry data. With this 
technique, all the characteristics of the sperm in the sample 
can be visualized at a glance, facilitating comparisons among 
samples and identification of subtle changes. In the example, 
aliquots of the same stallion ejaculate were extended and 
incubated at 37ºC for 3 hours in 2 distinct media. Sperm were 
stained with a 4 colors protocol, to identify live, apoptotic 
(Caspase 3 and Annexin V) and necrotic sperm (Live/Dead 
Viakrom 808®). A quick view of this panel, comparing the 2 
incubation sets (1 versus 2), allows the observer to see that 
there are more viable sperma in 1a than in mapping 2. In the 
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Figure 1. Example of a multiparametric panel for the study of stallion sperm. (A) Gate for the sperm, where sperm events are 
identified based on forward (FSC) and side scatter; events having higher area in the FSC-A are removed from the analysis since they 
represent doublets and clumps. (B) To remove debris, the sample is stained with a permeable DNA binding probe (Hoechst 
33342), and only DNA bearing particles, mostly sperm, are stained. Unstained particles (debris) are removed from the analysis. 
(C) Combination of H33342 and CellEvent®; this combination of probes identifies 3 sperm populations corresponding to live, 
apoptotic, and necrotic sperm. (D) Double staining with 3 probes to identify apoptotic changes, CellEvent®, to identify Caspase 3 
positive sperm and Annexin-V to identify sperm having transposition of phosphatidylserine to the outer leaflet of the membrane. 
Three populations are easily identified. (E) Combination of CellEvent®, and the fixable live/dead probe Viakrom 808®. This com-
bination easily identifies 3 populations: live, apoptotic, and necrotic sperm. (F) Combination of H33342 and the fixable live/dead 
probe Viakrom 808®; this combination of probes identifies 3 types of populations: live sperm, dead sperm, and damaged sperm 
(2 & 3 positive for Viakrom 808®).
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Figure 2. Use of artificial intelligence techniques to simplify the output of flow cytometry analysis. Figure presents a Flo self-orga-
nizing mapping for visualization and organization of flow cytometry data where all the characteristics of stallion sperm in aliquots 
of the same ejaculate, extended, and incubated at 37ºC for 3 hours in 2 media (1 versus 2) are presented and visualized at a glance. 
Here, sperm were stained with a 4 colors protocol to identify live, apoptotic (Caspase 3 and Annexin V), and necrotic sperm (Live/
Dead Viakrom 808®) in particular clusters. The gains in time are relevant, for instance, after live sperm (red circles) comparing the 
2 incubation panels (1 versus 2). In 1a, there are more viable sperm than in panel 2, where there is a larger abundance of sperm 
having several apoptotic markers. Interestingly as well, panel 2 depicts the presence of many live sperm having phosphatidylserine 
transposition to the outer membrane, representing unstable membranes.

Anexin+

apoptotic

necrotic

SPERMATOZOA

viable

1

Metacluster

1

2

3

4

5

6

7

8

9

10

a

b

Anexin+

apoptotic

necrotic

SPERMATOZOA

viable

c

d

2

Metacluster

1

2

3

4

5

6

7

8

9

10

http://dx.doi.org/10.58292/CT.v15.9406


6 Citation line: Clinical Theriogenology 2023, 15, 9406, http://dx.doi.org/10.58292/CT.v15.9406

latter, sperm having various apoptotic markers are more abun-
dant (see 2d). Moreover, many live sperm exhibit phosphati-
dylserine transposition to the outer membrane, representing 
unstable membranes. Such sperm are at risk, and the clinician 
benefits from knowing all this battery of data and its quantifi-
cation before deciding the fate of the ejaculate or the use of a 
processed sample for further use. Hopefully, there shall be 
gains in diagnostics and in resulting fertility. 

Concluding remark

Cytomics, combining novel designed motility analyzers, mul-
tiparametric flow cytometers, and enhanced digital imaging 
together with the incorporation of artificial intelligence in the 
analysis, shall dominate the landscape of andrological  
laboratories and enable quick determinations on huge sperm 
numbers for markers highly relevant to sperm function and, 
hence, for fertility. Such advancements shall, however, hardly 
replace essential clinical andrological practice.
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