
Introduction

Reproductive science has critical roles in species conservation 
and management.1,2 Specifically, advances in understanding 
species’ reproductive biology facilitate development of repro-
ductive technologies that are useful for ensuring genetic and 
demographic viability of ex situ wildlife populations and assist in 
development of strategies to control overpopulated species.1 Of 
the 37 Canidae family (includes domestic dog [Canis familiaris]) 
species, 5 are listed as ‘endangered’ or ‘critically endangered’ by 
the International Union of Conservation of Nature. Therefore, 
development of assisted reproductive technologies (ARTs) would 
certainly be useful for conservation and management of these 
threatened canids.

Currently, existing knowledge on canid reproductive biology 
is mostly gleaned from domestic dog studies.3-7 It is well reco-
gnized that reproductive biology of female canids is unique 
compared to other mammalian species. Specifically, female 
reproductive cycle is characterized by an extended proestrus 
followed by protracted estrus with each period lasting on average 
of 1 week.8 Estrous period is characterized by an estrogen peak 
that coincides with rising progesterone concentrations before 
ovulation.8 Estrus is followed by diestrus, a luteal phase avera-
ging 2 months in duration irrespective of pregnancy. Diestrus 
is succeeded by anestrus, an extended interval of ovarian quies-
cence.8 Whereas domestic dogs exhibit nonseasonal monoestrus 
once or twice a year,8 most wild canids breed seasonally. The 
onset of breeding season in wild canids varies among species 
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and is dependent on environmental factors, such as latitudes 
and rainfalls.9,10 Furthermore, although most canids are spon-
taneous ovulators, there has been evidence of induced estrus 
or ovulation in the Island fox (Urocyon littoralis), maned wolf 
(Chrysocyon brachyurus),11,12 and seasonal polyestrus in dholes 
(Cuon alpinus) and bush dog (Speothos venaticus), indicating 
diversity in reproductive mechanisms within Canidae family.

Canid oocyte is also unique compared to that of other mamma-
lian species. Specifically, domestic dog ovaries contain a higher 
proportion (7 - 11%) of polyovular follicles than those (4%) 
of the domestic cat.13,14 Although polyovular follicles release 
multiple oocytes, there is evidence that only 1 gamete is capable 
of undergoing maturation and fertilization.14 Another unique 
feature of canid oocytes is that they contain large amount of 
cytoplasmic lipids compared to other mammalian species, inclu-
ding cat and pig.15 To date, the extent to which cytoplasmic lipids 
have roles in oocyte development is unknown. Nevertheless, 
it has been suggested that the challenges in applying conven-
tional in vitro oocyte maturation systems to the dog is partly 
associated with the unusually large amount of cytoplasmic 
lipid in this species.16 Finally, the most striking feature of dog 
gamete biology is that the oocyte ovulates in an immature stage 
requiring up to 48 - 72 hours to complete nuclear maturation 
within the oviduct,6,15,16 and this characteristic undoubtedly 
contributes to challenges in developing in vitro maturation 
(IVM) system for dog oocytes.
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Due to inability to reliably mature dog oocytes in vitro, ARTs 
that require the use of in vitro matured gametes have lagged 
behind compared to other species. Nevertheless, a handful of 
live offspring have been produced from in vitro derived embryos 
produced from in vivo matured oocytes via in vitro fertilization 
(IVF) or somatic nuclear transfer (SCNT),17-19 and thousands of 
pups were born from AI with fresh and frozen-thawed sperm.20,21 
This review will summarize the status of reproductive technologies 
in domestic and wild canids and will discuss exciting research 
in fertility preservation and the application of reproductive 
technologies in wild canid conservation.

Semen collection and artificial insemination 

Apart from domestic dog and farmed fox species, semen 
collection is normally performed by electroejaculation (EEJ) in 
wild canids.22-27 Maned wolf,28 gray wolf (Canis lupus),29,30 and 
crab-eating fox (Cerdocyon thous)31 ejaculates also have been 
obtained using digital stimulation, although this is not a routine 
method. The limitation of digital stimulation technique is that 
it requires preconditioning of animals to physical restraint, and 
thereby, relies on the availability of animal trainers. However, 
this method does not require anesthesia and can be performed 
more frequently than EEJ (multiple collections per week versus 
once or twice during breeding season).28 Recently, urethral 

catherization (after medetomidine treatment) developed for 
felids32,33 has been successfully applied to the domestic dog34 
and red wolf (Canis rufus).27 Like EEJ, this method requires 
anesthesia; however, it does not require specialized equipment, 
and therefore, can be applied to individuals living in situ or 
under conditions where EEJ is not feasible. Semen characteristics 
of domestic and wild canid ejaculates collected using various 
techniques are summarized (Table).

A major challenge in semen collection in canids, especially via 
EEJ and urethral catheterization is urine contamination.24,27,34 
The prevalence of urine contamination varies among species, 
collection method and time of the year. Specifically, this author 
has observed urine contamination as a common feature in the 
maned wolf, regardless of collection methods. For red wolf, 
urethral catheterization often results in urine contamination 
compared to EEJ.27 As a result, it is recommended that urethral 
catheterization semen collection method should not be used in 
red wolf for cryopreservation of sperm.27 Urine alters osmolarity 
and pH of semen samples that, in turn, increases the proportions 
of sperm with bent and coiled tail, decreases motility,27,35 and 
increases the susceptibility of sperm to osmotic stress. For the 
African wild dog (Lycaon pictus), urine contamination in semen 
samples collected via EEJ occurred more often when samples 
were collected from subordinate males during prebreeding season 

Species Volume
 (ml)

Concentration
(x 106 sperm/ml)

Motility
 (%)

Morphologically 
normal sperm (%)

Citations

Digital manipulation

Domestic dog
Maned wolfa

    Breeding season
    Non-breeding season
Gray wolfb

Blue foxb

Crab-eating foxa

1-30

1.3 ± 1.2 
0.4 ± 0.6
1.7 ± 0.2

0.39 ± 0.26
0.39 ±0.18

300 - 1000 

73.9 ± 87.2* 
6.1 ± 4.9*

290.8 ± 53.5
491.8 ± 594.4
463.7 ±84.3

70

76.1 ± 23.9
80 ±14.5
91.7 ± 1.5

N/A
86.0 ±16.9

70

36.5 ± 24.0
20.8 ±19.8

N/A
89.9 ± 4.4
2.0 ±1.0

36
28

30
37
31

Electroejaculation

Domestic dog
Coyoteb

Red wolfa

Red wolfb

African wild dogb 
African wild dogb

    Breeding season
    Non-breeding season
Maned wolfb

1.8
1.67 ± 0.4
6.15 ± 5.6
4.7 ± 0.7
0.6 ± 0.1

NA
NA

2.0 ± 0.6

129.6
549.2 ± 297.7
96.7 ± 178.7
146.5 ± 25.7
212.3 ± 87.3

32.3 ± 9.2
27.4 ± 11.5
43.4 ± 18.2

30.1
90.4 ± 4.5
80.8 ±16.9

71.2
69.5 ± 3.3

47.4 ± 6.7
17.3 ± 10.2
59.8 ± 4.9

N/A
78.0 ± 13.5
46.5 ±14.1
73.6 ± 3.2
76.2 ±6.2

50.9 ± 5.2
40.6 ± 9.8
28.1 ± 4.4

38
26
27
39
25
24

22

Urethral catheterization

Domestic dogb

Red wolfa

0.09 ± 0.03
0.36 ± 0.08

1,186.67 ± 304.66
50.4 ± 23.5

58.3 ± 8.7
~40%

53.2 ± 5.6
NA

34
27

Table. Seminal traits of domestic dog and wild canids

*Total sperm per ejaculate
aMean ± standard deviation
bMean ± standard error of mean
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than breeding season.24 To circumvent this issue, a common 
practice for semen collection in wild canids is to remove urine 
and flush the urinary bladder with saline prior to EEJ.

To date, AI with fresh, chilled and frozen-thawed sperm has 
been widely used in the domestic dog21 and farmed foxes.40 
Offspring were produced from AI with fresh or frozen-thawed 
sperm in gray wolves,41,42 Mexican gray wolves,40 and red 
wolves.39 However, AI has not been routinely applied to genetic 
management of threatened and endangered canids, likely due 
to the lack of knowledge on species’ reproductive biology, 
the challenges in predicting ovulation onset and effectively 
manipulating female reproduction as well as poor seminal 
quality (Table 1).40 Therefore, future research should focus 
on developing a noninvasive method to predict ovulation 
in endangered canids. For example, the ability to assess 
luteinizing hormone in urine samples would be extremely 
useful for ovulation prediction and timed insemination when 
frequent blood sampling is not feasible.

Sperm cryopreservation

First records of live birth after AI with cryopreserved sperm were 
reported in 196943 for domestic dog and in 1975 for gray wolf.42 
Since these first successes, canid sperm cryopreservation has 
been widely studied in both domestic dog21,44-46 and wild canids, 
including gray wolf,47,48 red wolf,27,39,49 maned wolf,22 African wild 
dog,25 red fox,50 and blue fox.50 Glycerol has been generally used 
as a cryoprotectant for canid sperm.21,25,27 However, in 1 study, 
dimethyl sulfoxide was superior to glycerol for cryopreservation 
of maned wolf sperm.22 Interestingly, dimethyl sulfoxide was toxic 
for dog sperm,51 indicating species differences in the response to 
cryoprotective additives. Like pig52,53 and horse,54 there appears 
to be male-to-male variations in the susceptibility of sperm 
to cryopreservation that is independent of the quality of fresh 
semen and normal fertility at natural mating.21,46,55 Whelping 
rate and litter size obtained from frozen-thawed dog sperm are 
about 23 - 30% less than fresh sample.21 Nevertheless, AI with 
frozen-thawed sperm has been applied in domestic dog breeding 
and has resulted in thousands of puppies.21 Unlike domestic dog, 
studies in wild canids, including African wild dog25 and red wolf 
have demonstrated precipitous decreases in motility and viability 
of frozen-thawed sperm following incubation despite acceptable 
viability immediately after postthaw.49 Our laboratory recently 
evaluated the effects of extracellular vesicles (EVs) from domestic 
dog oviducts on postthaw survival of red wolf sperm. EVs contain 
proteins, RNA, and DNA messages that deliver to neighboring cells, 
that in turn regulate recipient cells’ function.56 We reported that 
thawing red wolf sperm in medium containing dog oviductal EVs 
supports sperm motility and acrosomal membrane integrity after 
2 hours of incubation compared to nonEVs control.57 Proteomic 
analysis also revealed that dog oviductal EVs contain several 
proteins that influence mitochondria function, plasma and acro-
somal membrane integrity, and stress responses,57 indicating the 
useful potential of oviductal EVs in improving posthaw survival 
and longevity of wild canid sperm.

In vitro oocyte maturation and fertilization

In vitro oocyte maturation (IVM)

Due to their unique reproductive and gamete biology, develop-
ment of IVM systems for canids has been far from successful.16 
Investigations have included impacts of stage of reproductive cycle, 
culture medium and protein, and hormone (gonadotropins and 
gonadal steroids) and growth factor supplementation (see review16). 
Nevertheless, on average, only 15 - 20% of cultured oocytes achieve 
the metaphase II (MII) stage after 48 - 72 hours of in vitro culture.16 
Supplementing the culture medium with 10 mM caffeine during 
the first 24 of 72 hours of incubation increased maturation rates 
compared to unsupplemented controls (42.2 versus 25.5%) with 
small proportion (4%) of gametes from the former treatment 
developing to morula stage after IVF.58 Interestingly, incubating 
dog oocytes with caffeine during 24 - 48 or 72 hours of culture 
did not improve maturation rate. The beneficial effect of caffeine 
on dog IVM is likely due to activation of maturation-promoting 
factor and mitogen-activated protein kinase (MAPK),59 2 kinases 
with critical roles in chromatin reconfiguration during oocyte 
maturation.60 Supplementation of insulin like growth factor-1,61 

growth differentiation factor-9 and bone morphogenetic protein-
1562 also enhanced nuclear maturation of dog oocytes compared 
to unsupplemented control. Yet, overall MII rates in those studies 
were still < 20%.

During the past several years, interest in examining the roles of 
reproductive EVs in regulating gamete function has substantially 
increased.56 Oviductal exosomes (the smallest EVs) stimulated 
cumulus cell proliferation by activating epidermal growth factor 
receptor (EGFR)/MAPK signaling pathway.63 This indicates the 
potential role of oviductal EVs in regulating dog oocyte maturation, 
as cumulus cells are known to induce meiotic resumption and 
support cytoplasmic maturation in several mammalian species.64 

Dog’s oviductal and cumulus cells recovered during estrus had 
higher levels of MAPK1 than cells recovered during anestrus and 
diestrus.65 Yet, coincubation of dog oocytes with oviductal cells 
from estrus resulted only in 10% of the cultured gametes develo-
ping to MII.65 Coincubation of estrous oocytes with oviductal cells 
significantly improved MII rate after 72 hours IVM compared to 
controls (47 versus 11%).66 Furthermore, in vitro matured estrous 
oocytes developed to 8-cell stages (66%) following parthenoge-
netic activation and in vitro culture at a rate comparable (85%) to 
in vivo matured gametes.66 Despite the discrepancy in the above 
studies, findings to date are encouraging and emphasize the need 
to further explore the roles of reproductive EVs (from follicle fluid 
and/or oviduct) in development and maturation of dog oocytes.

Most IVM studies recover dog oocytes from tissues obtained during 
routine ovariohysterectomy. Follicle size significantly influenced 
developmental competence of the dog oocyte.67 Specifically, ~ 80% 
of oocytes from follicles > 2 mm in diameter complete nuclear 
maturation in vitro compared to only 16 to 38% of those from 
smaller (0.5 - < 2 mm) source follicles.67 Because > 2 mm diameter 
follicles only appear during proestrus and estrus, it is hypothesized 
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that the overall low IVM success in canids is likely due to that the 
oocytes from smaller follicles have not fully acquired develop-
mental competence and therefore, are not able to mature under 
culture conditions developed for fully grown gametes.67 Exposure 
of dog oocytes for 48 hours to meiotic inhibitor compounds (e.g., 
roscovitine and butyrolactone) inhibited meiotic resumption of 
dog oocytes in vitro.68 Such oocytes were able to resume meiosis 
at a higher rate than those not been exposed to meiotic inhibitor 
compounds.68 Therefore, it may be useful to explore the influence 
of short-term inhibition of meiotic resumption followed by coincu-
bation with oviductal cells or EVs on dog oocyte development. 
Such studies may provide insights in mechanisms regulating gamete 
maturation, information that is critical for the development of an 
effective IVM system for this species. 

In vitro fertilization

The initial report of IVF using in vitro matured dog oocytes was 
published more than 40 years69ago, although embryonic deve-
lopment was not reported. Since then, several investigators have 
attempted to perform IVF of incubated oocytes, albeit with limited 
success.16,58,70-77 Thus far, there is only a single report demonstrating 
the production of 1 blastocyst from IVF from in vitro matured 
oocytes,72 and 1 non-term pregnancy after transferring in vitro 
derived presumptive zygotes into recipient females.73 In vitro 
maturation and fertilization have also been conducted in silver 
fox; however, embryonic development was not reported.78 To 
date, there have been a few studies on dog and fox IVF using in 
vivo matured gametes. Only 1 oocyte reached morula (144 hours 
after IVF) when blue fox oocytes (n = 36) were inseminated with 
frozen-thawed sperm.79 Approximately, 12% of oocytes collected 4 
days after ovulation developed to 2-cell stage post IVF; 5 embryos 
developed further but arrested at the 4-cell stage. Only recently 
was the first litter of pups produced from cryopreserved, in vitro 
derived embryos.17 Two factors contributing to that success included 
supplementation of magnesium to the sperm capacitation medium 
and use of day 6 (post LH surge) oocyte for IVF.17,80 Interestingly, 
the presence of progesterone during IVF did not impact fertilization 
and embryonic development.17 

Oocyte and embryo cryopreservation

Large amounts of intracellular lipid within the canid oocyte presents 
an additional challenge in developing ARTs. To date, a handful of 
studies have been conducted on canid oocyte cryopreservation.81-84 
Due to the lack of effective IVM systems to assess developmental 
competence of cryopreserved gametes, morphological assessment 
or vital staining have been used to determine cryopreservation 
success in most studies. By using the open-pull straw technique, 
the percentage of vitrified-warmed dog oocytes completing nuclear 
maturation was similar to that of fresh control, although more 
cryopreserved gametes were arrested at the GV stage than those of 
fresh counterparts.83 Approximately, 90% of blue fox oocytes vitrified 
using the two-step open-pulled straw method exhibited normal 
morphology post-warming and 11% of these gametes developed 
to the MII stage, comparable to the fresh control.84 Finally, 60% of 

dog81 and Mexican gray wolf oocytes82 maintained viability (based 
on vital staining) after vitrification using the cryotop technique.

Successful embryo cryopreservation in canids either by vitrification85 

or slow freezing method86 has been reported in the domestic dog, 
demonstrating a stage-dependency in the susceptibility to cryopre-
servation. Specifically, blastocysts are more sensitive to vitrification 
than those at the earlier stages of development (1-cell to morula 
stages).85 Although dog blastocysts cryopreserved using the slow 
freezing method were able to re-expand during in vitro culture, 
transferring these embryos did not result in offspring production.86 

To date, live births have been produced from embryos that had 
been frozen during cleavage stages (2 - 16 cells). For example, 
transfer of 77 vitrified-warmed 4 - 16-cell dog embryos resulted 
in the birth of 7 live offspring (9.1%).85 Furthermore, 16% birth 
rate were achieved after transferring 6 embryos vitrified using 
a closed vitrification system (Vit kit).87 This same vitrification 
method has been used to cryopreserve in vitro derived embryos 
resulting in live birth.17

In vitro folliculogenesis

Each ovary contains thousands of immature follicles enclosing 
oocytes that are never ovulated and thus never contribute to 
reproduction. The ability to activate and grow immature follicles 
to a mature stage producing a competent oocyte would help 
preserve genetically valuable dog models of human diseases and 
endangered canids.88 During the past decade, advances have been 
made in development of in vitro culture system for dog ovarian 
tissue and isolated follicles.89-96 Compared to domestic cat, dog 
ovarian tissues are highly susceptible to in vitro culture, likely due 
to the highly rigid cortex that limits nutrient supply to the enclosed 
follicles.97 Studies have examined effects of growth factors, inclu-
ding epidermal growth factors and vascular endothelial growth 
factors,92,98as well as an anti-apoptotic agent, Z-VAD-FMK99 on the 
activation and survival of enclosed follicles, with varying results. 
The current in vitro culture protocol can maintain the viability 
of enclosed follicles for only 7 days.92 Nevertheless, the culture 
system developed for dog has been applied to the maned wolf 
with comparable results. These findings underscore the impor-
tance of the dog model for developing ARTs for threatened and 
endangered canids. 

Follicle stimulating hormone (FSH) is essential for in vitro growth of 
isolated dog follicles;90,93although they increase in size and produce 
steroids in the presence of FSH, gonadotropin supplementation 
does not support the growth and survival of the resident gamete.90 

This was attributed to disruption of the communication between 
the oocyte and the surrounding granulosa cells.90 Our laboratory 
has demonstrated that supplementing culture medium with 100 
ng/ml activin promotes dog follicle growth and antral cavity expan-
sion and supports oocyte’s chromatin integrity by maintaining the 
transzonal projection for 12 days.100 Most recently, it was reported 
that supplementing culture media with 2 cAMP modulators, cilos-
tamide and forskolin can sustain viability of cultured oocytes by 
promoting cAMP production and gap junction activity.101 Because 
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the communication between the oocyte and surrounding granulosa 
cells is critical for folliculogenesis and oogenesis, future work on 
in vitro culture of isolated follicles should focus on developing 
approaches that support the maintenance of the cell-cell commu-
nication during long-term incubation.

Somatic cell nuclear transfer and transgenesis

Since the first report on live birth in 2005, there have been several 
studies on SCNT in domestic dogs.19,102,103 The protocol developed 
for the dog has also been applied to gray wolves104,105 and coyotes,106 
resulting in production of live offspring. Due to the inability to 
in vitro mature dog oocytes, studies to date have utilized in vivo 
matured gametes as the recipient cells for a variety of donor cell 
types, including fetal and adult fibroblasts as well as adipose derived 
mesenchymal stem cells.103,107 Despite the low success rate (<5% live 
birth from numbers of transferred embryos), cloned individuals 
appear to have normal health and reproductive competence.103 

Specifically, health and reproductive assessment of cloned indi-
viduals (n = 3 dogs) revealed that age-related hematological and 
serum biochemical parameters as well as circulating hormone 
concentrations of cloned dogs are similar to non-cloned counter-
parts.103 Furthermore, cloned dog ovaries exhibit morphological 
changes in the same manner as non-cloned individuals. Finally, 
live puppies have been produced after AI of cloned females with 
fresh semen from a cloned male dog.108 

The successful production of SCNT dog embryos has facilitated 
the application of transgenesis technology in this species.109-111 

The first transgenic dog that expressed a red fluorescent protein 
gene was produced in 2009.18 Since then, there have been several 
reports on the production of transgenic offspring as models 
for studying human disorders, including type 2 diabetes112 and 
Alzheimer’s disease.113

Summary and future perspectives

Due to their unique female reproductive characteristics, the 
development of ARTs in the domestic dog and their wild cousins 
has proven to be extremely challenging. Nevertheless, substantial 
progress has been made during the past decade, including the first 
production of IVF puppies and numerous offspring from SCNT and 
transgenesis. Recent studies on the influence of reproductive EVs 
on the function and cryosurvival of dog and wild canid gametes, 
and utilization of organ-on-a-chip technology in growing dog 
ovarian cortices and isolated follicles in vitro114 have provided 
encouraging results. Such studies will likely provide insights 
into mechanisms regulating gamete formation and function and 
generate information useful for development of effective tools 
to preserve/extend fertility of domestic and wild canids. So far, 
the domestic dog has served as a valuable model for establishing 
reproductive technologies in wild canids and dog protocols have 
been successfully applied to their endangered cousins. Yet, there 
are still needs for species-specific research due to the enormous 
diversity in reproductive biology within the family Canidae.10
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