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Abstract

Estrus synchronization protocols vary widely, and errors during implementation are not uncommon. When an error is made, rec-
ommendations for resolution must consider the initial purpose of implementing the synchronization protocol in the herd. The 
ideal solution is to convert the protocol to a different published protocol. When this is not possible, the safest solution for main-
taining an acceptable pregnancy rate is often either restarting a synchronization program or potentially foregoing artificial insemi-
nation for the season. Knowledge of estrous cycle physiology and how hormone treatments manipulate the cycle are foundational 
when attempting to modify a protocol based on the specific error that is made. Errors made early in a synchronization protocol 
tend to be more manageable than those made toward the end of the protocol. The use of less valuable semen and immediate intro-
duction of a clean-up bull should be considered to maximize pregnancy outcomes when attempting to correct an error during 
estrus synchronization.
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Introduction

The goal of estrus synchronization is to create a herd of fertile 
females that will either express estrus and/or ovulate within 
an ideal timeframe. If breeding is based on estrus detection, a 
larger variability of timeframe may be acceptable. However, 
when fixed-timed artificial insemination (AI) is planned, a 
tighter synchrony of the group is critical.1 Ovulation occurs 
~ 30 hours after the onset of estrus in Bos taurus, providing a 
very narrow window in which successful pregnancy can occur 
as a result of insemination.2 Success of synchronization is 
practically determined by pregnancy outcome, rather than 
estrus expression or ovulation rates. The determination of an 
ovulation rate is not practical, and neither the ovulation rate 
nor estrus expression is directly predictive of pregnancy 
outcome.

Numerous factors affect success of estrus synchronization, 
including the selection of a protocol that fits the herd type.3 
Protocols often differ for B. taurus versus B. indicus, dairy ver-
sus beef, and conventional versus sex-sorted semen. In the 
presynchronization period, animal health, animal nutrition, 
liquid-nitrogen tank maintenance, and pharmaceutical stor-
age and date of expiration should be evaluated. Critical factors 
include proper dosing, route of treatment, and timing of 

pharmaceuticals during synchronization, and semen han-
dling, AI technique, and AI timing. The ability of the producer 
to comply with drug treatment and AI timings should be con-
sidered when selecting a protocol. After synchronization, ani-
mal handling, stress, transport, and nutrition can also impact 
success.3

Errors during synchronization related to pharmaceutical 
treatment are not uncommon.4 There are numerous pub-
lished protocols that can be quite complex, particularly if 
presynchronization or resynchronization protocols are 
included. Most protocols use several pharmaceuticals, with 
varying frequency and/or dosage. Unfortunately, this results 
in seemingly infinite opportunities for error during imple-
mentation of a synchronization protocol. Ultimately, this 
also means that a ‘one-size fits most’ solution is not realistic 
or reliable.

Recommendations regarding solutions must be made care-
fully since a previous bad experience may negatively impact 
perception of estrus synchronization or AI.5,6 The purpose of 
this review is to provide useful information for recommend-
ing a feasible solution after an error has occurred during 
estrus synchronization in a herd. This includes the following: 
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1. a brief review of the purposes of implementing estrus syn-
chronization; 2. four general categories of solutions to con-
sider; and 3. core synchronization theory and the underlying 
estrous cycle physiology. A strong understanding of synchro-
nization mechanisms and estrous physiology is vital to suc-
cessfully modify an existing protocol. Superstimulation, 
superovulation, and estrogen-based protocols are outside the 
scope of the presented information.

Purposes of implementing estrus synchronization

The intended purpose of estrus synchronization must be con-
sidered when deciding on a solution for errors in protocol 
execution. Cost-prohibitive or time-consuming corrections 
may jeopardize the intended benefits of synchronization. 
Estrus synchronization protocols are used to increase eco-
nomic impact, genetic selection, and overall efficiency of pro-
duction in cattle herds.7 Synchronization can increase 
pregnancy rates to fixed-time AI, embryo transfer, or live cover 
insemination,8,9 which, in turn, increases profitability and 
decreases cost of rebreeding. More uniform calf crops of supe-
rior genetics can be produced when synchronization is com-
bined with AI. This enhances the marketability of calves and 
increases their market value.10–12 Some synchronization proto-
cols can also induce cyclicity in noncycling individuals. 
However, pregnancy rates were significantly lower in females 
that were not cycling prior to synchronization/AI compared to 
those that were cycling.13

Critical evaluation of errors and determining 
solutions

With the purpose of estrus synchronization in mind, consider-
ation can be given to 4 general solutions: restart the protocol, 
forgo AI for the season, convert to a different published proto-
col, or modify the protocol based on knowledge of synchroni-
zation theory and estrous cycle physiology.

Restarting a synchronization protocol is a straightforward 
option for the producer. If time in the breeding season allows, 
and the operation can cover the cost of restarting the synchro-
nization protocol, this may be a feasible solution to circum-
vent errors made in the initial synchronization attempt. It may 
reduce the risk of another error resulting from lack of familiar-
ity with a new or modified protocol.14 However, the cost of 
restarting may render this option less desirable. Costs may 
include additional pharmaceuticals, extra labor, and loss of 
production associated with delayed breeding (i.e. lighter calf 
crop at weaning and shorter or shifted breeding season). These 
costs are quite considerable in a commercial beef operation 
but may be overcome in certain seed stock beef operations.15 
Restarting the protocol allows for a fresh start with an already 
known and prepared-for protocol.

A second general solution is to forgo AI and solely use clean 
up bull(s) for that breeding season. Ideally, the bull(s) must 
be able to breed multiple times while exposed to the herd over 
a window of time, minimizing negative effects if the error 
resulted in less synchronous ovulation. Bulls with high libido 
may achieve multiple services in a routine estrus synchroniza-
tion program.16,17 This option may reduce labor and pharma-
ceutical costs. One concern with this option is ensuring 
sufficient bull power for the synchrony of expected estrus. In a 
non-synchronized herd, the serving capacity of a fertile bull is 
expected to be 1 bull to 25 to 60 cows.18 In a study of 

synchronized females, pregnancy rates were not affected by 
either the serving capacity ratio (ranging from 1:7 to 1:51) or 
the number of females exhibiting estrus when exposed to 
bulls classified as high or medium libido.19 However, serving 
capacity may still be a concern as libido is not routinely 
tested,20 and newer synchronization protocols may have 
tighter estrus expression compared to more simple protocols 
(i.e. Syncro-mate B or ‘two-shot’ prostaglandin F2α [PGF2α]).19 
Therefore, when considering this solution, the type of proto-
col in use and the stage of the protocol in which the error 
occurred must be considered.

In some cases, errors during estrus synchronization can be cor-
rected. In an ideal situation, the correction changes the 
planned protocol to another published protocol. A good start-
ing place to find additional protocols is a local extension web-
site. Insemination, semen sexing, and embryo transfer 
companies have synchronization protocols listed and dia-
gramed for producer use; these companies may also provide 
consulting, services, and products useful for executing proto-
cols. The multistate Beef Reproduction Task Force is aimed at 
bringing research and extension together, and their website 
(https://beefrepro.org/) contains links for downloadable 
resources and protocol timelines.21 Because protocols should 
be chosen based on the producer’s needs and capabilities, the 
decision to transform an existing protocol once an error has 
occurred to a different published protocol requires evaluation 
of both the producer’s abilities and the timing of the error in 
the initial protocol.22

Less ideal situations (i.e. unable to switch to another pub-
lished protocol) are much more common, and modifica-
tions of the protocol in these instances are likely to result in 
poorer synchrony.23 If breeding is based on estrus detection, 
lesser synchrony resulting from normal physiologic variabil-
ity of the estrous cycle may not be of concern. Estrous behav-
ior may be expressed earlier and for a shorter duration in Bos 
indicus cattle compared to Bos taurus.24,25 Ideally, AI should be 
performed 6 - 24 hours prior to ovulation, which is ~ 2 - 14 
hours after the onset of standing heat.26,27 In a fixed-time AI 
protocol in which the window of insemination is narrow 
(± 2 - 4 hours), variability in the synchronization of ovula-
tion is more detrimental.

Regardless of the program type, poorer synchrony that results 
from either a poorly timed luteinizing hormone (LH) surge or 
prolonged periods of follicular dominance is of particular 
concern. A narrow window of oocyte viability occurs after 
oocyte maturation is triggered by the LH surge.28 Prolonged 
periods of follicular dominance reduce embryonic develop-
ment and quality due to prolonged exposure of the oocyte to 
follicular estradiol, which has been correlated with delayed 
meiotic progression and blastocyst rate.29–31 Because the LH 
surge and follicular dominance occur toward the end of the 
protocol, it is easier to correct errors occurring at the begin-
ning of the protocol before these events are underway. Errors 
toward the end of synchronization tend to be more challeng-
ing to overcome. Fertility of the oocyte within a late atretic 
dominant follicle declines rapidly as crucial estradiol produc-
tion declines and progesterone production slowly increases 
with granulosa cell aging.32 The ovulated oocyte, arrested at 
metaphase II, is highly susceptible to postovulatory aging, 
resulting in decreased viability.33,34 Decreased developmental 
competence, or the oocyte’s ability to be fertilized and give 
rise to a healthy embryo, is significantly decreased due to pos-
tovulatory oocyte aging.35 Decreasing estradiol concentrations 
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due to the decline of the dominant follicle, and potential pos-
tovulatory oocyte aging can both compromise fertility near 
the end of the estrous cycle. Even females displaying estrus 
may have aged oocytes and be subfertile.36 In these cases, 
modification of synchronization is highly situational, depend-
ing on the protocol implemented and the error that was made. 
Critical evaluation of what was given, not given, and the tim-
ing of these events in light of their physiologic purpose is cru-
cial and complex. Therefore, the authors highly recommend 
use of less valuable semen and immediate introduction of a 
clean-up bull to attempt to maximize pregnancy outcomes if 
restarting synchronization and foregoing AI are not options. 
The only relatively simple error to overcome is when gonado-
tropin releasing hormone (GnRH) treatment at AI is forgot-
ten. GnRH should be given as soon as possible to help ensure 
ovulation as close to insemination as possible, but it is likely 
that the majority of well-synchronized females will ovulate in 
an acceptable time frame, even if ovulation is less synchro-
nous than initially desired.37

Integration of estrous cycle physiology and 
synchronization protocol

A strong knowledge base of synchronization theory and 
underlying estrous cycle physiology is critical in cases where 
modification of the protocol is the reasonable solution. 
Estrous cycle reviews are available that detail information 
beyond core concepts related to synchronization.24,38 As the 
bovid has a continuous, monoovulatory, and nonseasonal 
estrous cycle,24,38 synchronization protocols are designed to 
manipulate a group of females at variable stages of their cycle 
into 1 particular part of the cycle (estrus) at the same time. In 
a synchronization protocol, all individuals receive the same 
pharmaceutical at the same time, regardless of their status in 
the estrous cycle. Producers do not keep track of each animal’s 
stage in the estrous cycle for practical reasons, and therefore, 
the entire herd receives uniform treatment protocol to mini-
mize labor for producers and increase herd synchrony. Because 
the bovid is continually cycling, certain synchronization pro-
tocols may alter hormonal events midcycle and initiate the 
next cycle in which breeding will occur in an optimal 
timeframe.39,40

At synchronization, the ‘ideal’ cow (Figure. Cow A: Panels C 
and D) would already be cycling and nearing the end of her 
21-day cycle, such that she would ovulate 6 to 24 hours26,27 after 
planned insemination without manipulation. This cow would 
be ‘ideal’ because her cycle already aligns with the scheduled 
breeding at the end of synchronization. She would arrive at the 
planned breeding date and ovulate, without need for interfer-
ence. It is impossible, however, to determine which cows, if any, 
are the ‘ideal’ member of the herd before synchronization. This 
means that the ‘ideal’ cow still received synchronization drugs 
along with her herdmates. However, most individuals in the 
herd will not be in this ‘ideal’ category, and their cycle will need 
to be manipulated to ensure that they ovulate at the appropri-
ate time. When progesterone is low, ovulation results from a 
LH surge acting on the dominant follicle.41 Synchronization of 
herd-mates (Figure. Cows B through E) is aimed at manipulat-
ing cycles to align 3 key requirements: a low progesterone envi-
ronment, LH surge, and the existence of a dominant follicle 
containing a fertile cumulus-oocyte-complex.42,43

Low progesterone

A low progesterone environment is required for the dominant 
follicle to ovulate.41 This environment is necessary for 

ovulation because high progesterone environments prevent 
an LH surge from occurring. Progesterone inhibits episodic 
GnRH secretion from the hypothalamus. Conversely, GnRH 
exerts a positive effect on the pulsatile release of LH from the 
anterior pituitary, eventually culminating in a preovulatory 
LH surge and subsequent ovulation. Under a high progester-
one environment, the dominant follicle can become atretic, 
regress, and a new follicular wave begins.41

Progesterone is produced by the corpus luteum.38 Circulating 
progesterone concentrations in cattle with a functional corpus 
luteum must reach serum concentrations > 1 ng/ml to be con-
sidered physiologically relevant.44 In the natural estrous cycle, 
progesterone concentrations decrease (< 1 ng/ml) due to lysis 
of the corpus luteum that results from the luteolytic activity of 
PGF2α as it binds to its receptors. The number of PGF2α recep-
tors on the corpus luteum increases from the early to late 
luteal phase of the cycle, peaking around day 16 when luteol-
ysis typically occurs.45 PGF2α is produced by the uterus.38

To synchronize a low progesterone environment, PGF2α treat-
ment may be given to cattle. If the number of PGF2α receptors 
is sufficient, lysis will occur and progesterone concentrations 
will decline.46,47 Concentrations of serum progesterone decline 
to < 2 ng/ml within 12 hours after 30 mg of intramuscular 
PGF2α.

48 Typically, a corpus luteum will be capable of respond-
ing to a single dose of exogenous PGF2α by days 5 - 7 of the 
cycle (if day 0 is the day when ovulation last occurred).49,50 
Although the majority of females in an unsynchronized herd 
will have a corpus luteum capable of responding (Figure. Panel 
E and F), a significant remainder will not (Figure Panel G).51 
Therefore, PGF2α may also be used to presynchronize the herd 
in some protocols. The simplest example of this is a ‘two-shot’ 
PGF2α protocol. In this protocol, the first PGF2α treatment syn-
chronizes the majority of females. After enough time has 
passed to allow their new corpus luteum to mature and be 
responsive to PGF2α, a second PGF2α treatment is given. Females 
with a less mature corpus luteum at the first treatment likely 
did not respond. It is expected that these individuals’ corpus 
luteum will be mature enough by the second PGF2α treatment 
to respond and lyse or be close to natural lysis.51,52

Another way to create a low progesterone environment is the 
timely removal of progesterone treatment. Progesterone treat-
ment for a short period prevents the female bovid from ovu-
lating and subsequently developing a young corpus luteum. 
This period in which luteolysis is expected to occur in the pro-
tocol is depicted (Figure, Panel H). The source of progesterone 
is via a controlled internal drug release device (CIDR) and 
removal at PGF2α treatment with the intent of creating a low 
progesterone environment in all animals at the same time.53 
Notably, Bos indicus-influenced cattle may be more sensitive to 
progesterone’s effects during earlier aspects of the protocols. 
Improved pregnancy rates to fixed-time AI result when a func-
tional corpus luteum is eliminated at the beginning of the 
protocol.25

Luteinizing hormone surge

The hypothalamic-pituitary-gonadal axis is differentially regu-
lated by progesterone and estrogen. The hypothalamic surge 
center is responsible for inducing a LH surge in low progester-
one environments when progesterone’s negative inhibition 
on GnRH release is absent. Progesterone also negatively inhib-
its follicle stimulating hormone production, yet cohorts of 
small follicles are recruited due to transient rises in circulating 
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follicle stimulating hormone, even in a high progesterone 
environment. Eventually, 1 follicle is selected, and the grow-
ing dominant follicle produces increasing concentrations of 
estradiol during proestrus. After corpus luteum regression, 

and without the negative feedback of progesterone on GnRH, 
LH then increases in a pulsatile fashion.54 These changes cul-
minate in the LH surge and subsequently ovulation.55 After 
ovulation, the estradiol producing follicle becomes a 

Figure. Use of estrus synchronization to modify cows at various stages of the estrous cycle in an example herd. A herd of unsyn-
chronized females (Panels A, C, E, G, I, and K) may be at different stages of their estrous cycle at the start of a given protocol. Cow 
A is considered the ideal cow because no modification of her cycle is needed for her to ovulate near the planned breeding date 
(Panels C and D). In a herd of cycling females, the stage of the cycle in all cows is unknown, and therefore, all cows will be enrolled 
in an estrus synchronization program. Implementing an estrus synchronization program (e.g. 7-day CO-Synch + CIDR68,79 
[Panel B]), will modify the cycles of herd mates (Panels F, H, J, and L) to eventually coincide with the ideal cow by the time of the 
planned breeding date (Panel D). Note timeline presented is approximate, and cycles are not exactly to scale.
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progesterone producing corpus luteum.56 Detailed informa-
tion on the hypothalamic-pituitary-gonadal axis and effects of 
progesterone are available.25,53,57–59

Although an LH surge may occur within estrus synchroniza-
tion programs, the timing may be too variable for fixed-time 
AI programs (Figure. Panel I).23,28 Theoretically, ovulation of 
a dominant follicle could be induced by stimulation of vari-
ous aspects of the hypothalamic-pituitary-gonadal axis. This 
may include treatment with estrogens, GnRH, LH, or their 
analogues.60 As estrogens are illegal in food producing spe-
cies in the United States, a GnRH analogue is typically 
given.  Bos indicus-influenced cattle have a highly variable 
and  relatively low rate of ovulation to exogenous GnRH 
compared to Bos taurus.61,62 An LH surge is expected to occur 
~ 2 hours after exogenous GnRH treatment.63,64 Ovulation 
occurs ~ 22 - 34 hours (in Bos taurus63,64) or 26 - 28 hours 
(in Bos indicus65) after the LH surge. Sperm must travel from 
the site of deposition (i.e. uterus during AI) to the site of 
fertilization (i.e. ampullary-isthmic junction of the uterine 
tube). To coordinate travel efforts of both gametes, GnRH is 
commonly given 16 - 24 hours prior to AI.64,66,67 However, to 
reduce labor costs, GnRH is given at AI in some protocols 
(Figure. Panel J).21,68,69 The majority of inseminations in 
North America utilize conventionally frozen semen. Protocols 
designed for insemination using other semen types (i.e. 
fresh, chilled, or sex-sorted), number of sperm (i.e. sex-
sorted), or  in other anatomic locations (i.e. uterine horn 
breeding)  impact the timing of insemination and GnRH 
treatment.

Dominant follicle

In the natural estrous cycle, Bos taurus cattle can have either 
2 or 3 follicular waves. The 2 wave cycle produces a follicu-
lar wave ~ every 10 days, whereas the 3 wave cycle produces 
a wave ~ every 7 - 9 days.70 The average length of the estrous 
cycle is 21 days ± 2 days.71 However, cattle with 3 wave 
estrous cycles tend to have longer cycles, landing in the 
22+ day range overall.70 Bos indicus cattle estrous cycle aver-
age length is 21 days for 2 wave and 22 days for 3 wave 
cycles. Four and 5 wave cycles have also been reported.24 
Each wave contains 3 stages: emergence/recruitment, selec-
tion, and dominance.38 A dominant follicle is lined with 
mural granulosa cells possessing sufficient LH receptors to 
respond to LH surge.72 Dominant follicles also produce 
inhibin, a hormone that prevents progression of other folli-
cles.32 As previously reviewed, a dominant follicle will 
become atretic in a high progesterone environment, as it is 
unable to ovulate.53 In a low progesterone environment, the 
growing dominant follicle produces increasing concentra-
tions of estradiol during proestrus, triggering the LH surge, 
and eventual ovulation.55

The natural variability in wave length24,70 results in consider-
able challenges when attempting to synchronize a group of 
females. If wave timing is left unmanaged, some cattle may 
have significantly delayed ovulation.73 This could result in 
subfertility due to aging of the sperm.27 Currently, no thera-
pies exist to change the rate of follicle development (i.e. 
speed it up or slow it down). Ovulation of the first wave 
dominant follicle results in reduced pregnancy per AI com-
pared to the second wave. However, when progesterone was 
given, similar pregnancies per AI resulted.74 For practical 
purposes, wave number is not a consideration related 
to  estrus synchronization, particularly when the protocol 
includes progesterone treatment.

Altogether, current synchronization protocols rely on induc-
ing a wave at the same time in all herd members, so that dom-
inant follicles, capable of responding to LH surge, will be 
present at the same time.75 Variability in ovulation timing due 
to wavelength can be managed by utilizing an induced LH 
surge. Induction of LH surge was described in the previous 
section (Figure. Panel J). It is worth reiterating that only a 
dominant follicle, with sufficient LH receptors, will ovulate in 
response to induced LH surge.72 If the present follicle is much 
younger and, therefore, has not acquired dominance or the 
appropriate number of LH receptors, it is not capable of ovu-
lation (Figure. Panel K).

Eliminating a large, inhibin-producing follicle helps to synchro-
nize the next follicular wave in cattle.32 Initially, this was per-
formed by follicle ablation,76 but most protocols now use a 
GnRH analogue for this purpose. GnRH exposure results in the 
induction of an LH surge and the regression (if high progester-
one) or ovulation (if low progesterone) of any existing folli-
cles.64,77,78 After a new wave begins, sufficient time is allowed for 
the follicle to progress toward dominance and any young corpus 
luteum to mature. The corpus luteum is then lysed, followed by 
a second dose of a GnRH analogue treatment near the time of AI 
to cause ovulation of the dominant follicle (Figure. Panel L). 
Because exogenous GnRH induction of a new wave may result in 
a new corpus luteum,64,77 subsequent use of PGF2α is mandatory 
if the cow is to be bred before natural luteolysis would occur.80

A female bovid will not respond to the initial dose of GnRH 
analogue if a dominant follicle is not present at treatment. 
Therefore, some protocols include initial measures to create a 
persistent dominant follicle prior to this initial GnRH dose. 
Long-term (i.e. ~ 14 day) progesterone treatment is used.81 
During this period, the female will lyse her own corpus luteum 
but may not ovulate due to high concentrations of progester-
one. Lysis of the mature corpus luteum may be induced by 
uterine release of PGF2α.

31,49 Under natural circumstances, the 
lysis of the corpus luteum will cease progesterone production 
and remove the feedback of progesterone on hypothalamic 
GnRH release, allowing for eventual ovulation and subsequent 
LH surge.82 In cases where progesterone is given and a corpus 
luteum is not present, circulating progesterone concentrations 
are at physiologically relevant concentrations that are high 
enough to prevent LH surge but lower than the concentrations 
produced by a mature corpus luteum. These lower progester-
one concentrations result in persistence of a dominant follicle, 
rather than follicle turnover. In the absence of LH surge (natu-
ral or induced), the dominant follicle persists.83 When proges-
terone treatment is terminated, ovulation will occur, a corpus 
luteum will form, and a new wave will start. Synchrony of later 
waves is then used for breeding purposes. With these proto-
cols, the initial oocyte in the persistent dominant follicle ages, 
and the herd will express unfertile estrus after the termination 
of progesterone treatment. Producers must wait to breed 
according to protocol for acceptable pregnancy outcomes.14 A 
similar concept is used in the relatively new 7 & 7 protocol. 
Initially, exogenous progesterone and prostaglandin are given 
to mimic natural corpus luteum lysis and stalling of a domi-
nant follicle for up to 7 days. The GnRH analogue in the mid-
dle of the 14 days of progesterone treatment ultimately results 
in a new wave that is then utilized for breeding.84

Conclusion

Errors during synchronization related to pharmaceuticals’ 
treatment are not uncommon. The opportunities for error 
during implementation of a synchronization protocol can 
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appear quite infinite and ultimately suggest that a ‘one-size fits 
most’ solution is not realistic. Recommendations for solutions 
must be made carefully, considering both the producer and 
the affected herd. With the purpose of estrus synchronization 
in mind, 4 general solutions can be considered: restart the 
protocol, forgo AI for the season, convert to a different pub-
lished protocol, or modify the protocol. A strong understand-
ing of synchronization theory and estrous cycle physiology is 
vital if the chosen solution is to modify an existing protocol. 
Synchronization protocols manipulate cycles to align 3 key 
requirements: low progesterone environment, LH surge, and 
the existence of a dominant follicle containing a fertile 
cumulus-oocyte-complex.
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