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Abstract

For decades, interest in reproductive physiology of the domestic cat has largely been driven by its importance as a model for wild 
felids and human biomedical research. As such, several assisted reproductive technologies have been established in cats. Despite 
the growing need for feline theriogenology, the application of these tools in clinical practice is extremely limited. We discuss: 1. 
reproductive physiology of the queen and her unique challenges; 2. estrus induction (photoperiod, social interaction, and pharma-
cologic [gonadotropins, GnRH agonists]); 3. natural cycle monitoring (blood hormones, fecal hormone metabolites, behavior, 
vaginal cytology, transabdominal ultrasonography) and ovulation induction (manual stimulation, pharmacologic [gonadotropins, 
GnRH agonists]); 4. estrus suppression (photoperiod, melatonin, GnRH agonists, progestins); and 5. permanent nonsurgical con-
traception (immunocontraception, gene therapy). This review will summarize published reports on estrous cycle manipulation in 
felids, both wild and domestic; notable differences between cats and dogs are highlighted and comments based on the authors’ 
personal experiences and preferences for application are included.
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Introduction

In veterinary medical research, the number of publications fea-
turing dogs outnumbers cats ~ 3:1.1 Cats also remain understud-
ied in theriogenology.2 Perhaps, in part, because the domestic 
cat is viewed as an extremely fecund species. When one consid-
ers the estimated 80 million unowned, outdoor cats that live in 
the USA,3 it may appear incongruous to focus on assisted repro-
duction in cats. However, there is a growing body of literature 
that demonstrates that infertility is a major issue in cats. 

Early embryonic collections following natural matings in 
domestic short hairs produced good-quality embryos only 
from ~ 73% (38/52) of queens;4 the remaining cats either 
failed to ovulate (~ 8%) or had degenerating embryos (~ 8%), 
unfertilized oocytes (~ 10%), or no oocytes/embryos (~ 2%).4 
Most data in purebred cats are derived from case studies5,6 and 
self-reported questionnaires,7-10 with 15-42% of queens failing 
to conceive after natural mating. 

Despite an empiric lack of interest in feline theriogenology, the 
basic reproductive biology of the cat has been well-studied. 
This was largely driven by its importance as a model for wild 
cats.11 It is speculated that modern felids originated from a 

common ancestor ~ 11 million years ago and as such, their 
reproductive physiology has remained well-conserved across 
cat species.12 The domestic cat has also proven to be an import-
ant model organism for biomedical research. The genomic 
organization of the cat is highly similar to humans13 and cats 
possess ~ 250 naturally-occurring genetic disorders with anal-
ogous pathologies to human diseases.14 Assisted reproductive 
technologies (ARTs), such as in vitro fertilization (IVF), embryo 
transfer (ET), and artificial insemination (AI), have therefore 
been developed in the domestic cat to aid in the conservation 
of wild felids,15 to propagate naturally occurring genetic dis-
ease models,16 and to produce genetically modified animals.17

Although many ARTs are well-established in the cat, these 
tools are rarely utilized in general practice (especially com-
pared to dogs) and, for most veterinarians, their clinical expe-
rience with cat reproduction begins and ends with neutering. 
With both the number and professionalism of cat breeders 
rising, there is an increased (and as of yet unmet) demand for 
the application of domestic cat ART in veterinary medicine. 
This review considers: 1. the reproductive physiology of the 
queen and her unique challenges; 2. estrus induction; 3. natu-
ral cycle ovulation induction; 4. estrus suppression; and 5. 
permanent nonsurgical sterilization in the queen. 
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Reproductive physiology of the queen

The queen is seasonally polyestrous; the breeding season 
begins when daylight length increases and anestrus occurs 
after a reduction in daylight hours.18,19 Cats in equatorial zones 
may breed continuously, whereas cats at the polar circles only 
cycle for ~ 6 months.20 In the northern hemisphere, the breed-
ing season usually begins around February and ends by 
September.21 Temperature also has a role, as queens in warmer 
climates may continue to cycle as late as November before 
entering anestrus.22 Furthermore, periods of extreme heat and/
or humidity can increase the interestrus interval.23 The breed 
also influences photoperiod sensitivity as long-haired breeds 
tend to have a shorter, more-defined breeding season than 
short-haired breeds.24 For cats housed exclusively indoors 
without exposure to natural light, alterations in the daily pho-
toperiod can be utilized to manipulate the queen’s estrous 
cycle.25-27 Different protocols are reviewed in Photoperiod.

The queen is categorized as an induced ovulator,28 with the act 
of copulation serving as the canonical stimulus for release of 
gonadotropin releasing hormone (GnRH) and the subsequent 
surge of luteinizing hormone (LH) from the anterior pituitary 
gland. Amplitude of the LH surge is directly correlated with 
the number of copulations; 8-12 copulations over a 4-hour 
period produced peak concentrations.29 LH concentrations 
were significantly lower with only 4 copulations over the same 
interval, and were even lower with a single breeding. In the 
aforementioned study, 50% of estrual queens ovulated after 1 
copulation, whereas every queen ovulated after > 4 copula-
tions. Ovulation was determined by the amount of LH 
released, not by differences in the follicles’ responses to simi-
lar LH concentrations.30 Furthermore, ovulation appears to be 
an all-or-none event, as the number of mature follicles present 
during the preovulatory period correspond to the number of 
corpora lutea after mating in the queen. Because the queen 
requires an external stimulus to ovulate, one must consider 
ovulation induction when designing estrus manipulation pro-
tocols without natural mating (e.g. AI and ET). 

It should be easy to manipulate a queen’s estrous cycle 
because, in the absence of mating, the queen would ostensibly 
lack corpora lutea and not require luteal control protocols. 
However, spontaneous ovulation is a well-documented phe-
nomenon in cats.31-35 Reports vary greatly in the percentage of 
females that spontaneously ovulate (35-87%). The rate of 
each queen also varies widely among reports; some females 
rarely spontaneously ovulate, whereas others may consistently 
ovulate without copulatory stimuli. Interestingly, wild felids 
also demonstrate a spectrum of ovulation patterns, with some 
being almost exclusively induced-ovulators and others exhib-
iting a high rate of spontaneous ovulation.36,37 To date, felids 
are the only taxon reported to exhibit both spontaneous ovu-
lation in some individuals and exclusively induced ovulation 
in others.38

In equids and ruminants, prostaglandins are often employed 
during a luteal phase to regress the mature corpus luteum 
(CL) and return the female to estrus within a predictable inter-
val.39 Unfortunately, the feline CL is refractory to prostaglan-
din F2α treatment.40,41 GnRH antagonists that induce luteolysis 
in dogs42 are also ineffective in cats.43 Dopamine agonist cab-
ergoline has been successfully used with41,44 or without41,45,46 a 
prostaglandin to induce abortion in cats. Cabergoline regresses 
the CL via its inhibitory effect on prolactin secretion. The use 
of cabergoline in estrus induction protocols has not been 

reported, likely due to its long treatment period (5-15 days) 
and undefined interval for CL regression. Although aglepris-
tone has also been used to successfully induce abortion in 
queens, it is important to note that the mechanism of action 
differs; aglepristone is a progesterone receptor antagonist and 
cannot regress the feline CL.47

Estrus induction

There are a variety of indications for estrus induction in 
queens. As a long-day breeder, cats have a period of anestrus 
during short days and estrus manipulation is required if out of 
season breeding is desired. Cats can experience primary 
anestrus (delayed puberty) or secondary anestrus (abnormally 
long interestrus intervals in an adult queen that previously dis-
played cyclicity).48 Management practices (e.g. photoperiod, 
social interaction) should be reviewed before initiating phar-
macological intervention and prepubertal queens should not 
be induced with exogenous hormones because they are more 
likely to develop a high number of cystic follicles.48 
Spontaneous ovulation should be ruled out before diagnosing 
secondary anestrus. Finally, estrus induction is often utilized 
for cycle synchronization in ARTs, such as AI, collection of in 
vivo-matured oocytes for IVF, and recipient-preparation for ET.

Photoperiod

As discussed in the Reproductive physiology of the queen, 
the cat is a long-day seasonal breeder and is highly responsive 
to changes in photoperiod. Increasing exposure to light thus 
represents one of the easiest and most efficient techniques to 
induce cyclicity. 

A light:dark cycle of 8:16 hours was sufficient to cease cyclicity 
immediately;26 plasma estradiol concentrations were dramati-
cally reduced, with concentrations significantly lower than 
interestrus concentrations in females exposed to 14 hours of 
light per day. When females were again exposed to 14 hours of 
light, cyclicity resumed 12-26 days later (mean 16.3 days). A 
much longer anestrus was observed in a different study27 
where queens took an average of 44.6 days for estrus after 
returning to 14 hours of light exposure. Resumption of estrus 
occurred significantly sooner (mean 15.6 days) by providing 1 
hour of light during the dark period. 

A light:dark cycle of 12:12 hours (similar to equatorial condi-
tions) created the most productive year-round cyclicity (as 
defined by percent of successful breedings per week). 20 The 
same study reported that if a shortened and more-defined 
breeding season is desired, 2 months at 9:15 hours light:dark 
followed by 14:10 hours light:dark significantly increased the 
number of litters born 6 months after the change to 14 hours 
of light. Similarly, if a queen has been maintained under con-
stant artificial lighting conditions for years, reducing the light 
exposure to 8 hours per day for 2-3 months will allow her to 
experience a period of anestrus and may improve fertility.49 

Cats exposed to 24 hours of light will still demonstrate cyclic-
ity, but the rate of estrus is decreased (only a mean 0.8 periods 
of estrus were observed the first month, and ~ 1 estrus/month 
was observed the following 2 months).26 Plasma estradiol 
concentrations demonstrated prolonged periods of proestrus 
(up to 7 days), suggesting initial follicular development was 
temporarily suppressed. Thus, it is not the authors’ recom-
mendation to maintain queens under constant light exposure. 
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Finally, cats maintained in a home setting are often exposed to 
both natural and artificial light. Because the artificial lighting 
in a home setting is not constant, it may not result in predict-
able ovarian cycles. Anecdotally, most intact home-housed 
cats do not cycle during the short daylight period.

Social interactions

Interactions with conspecifics have the potential to influence 
the estrous cycle of the queen. In the aforementioned photope-
riod study,27 queens that returned to long-day light conditions 
(14 hours) after a period of short-day light exposure (8 hours) 
took an average 44.6 days to exhibit estrus.27 Introduction of 
other queens in estrus at the change of the photoperiod 
allowed the queens to resume cyclicity significantly sooner 
(22.3 days), likely through the influence of estradiol and pher-
omones.50,51 Similarly, it is also advised to house prepubertal 
females with cycling queens to help stimulate the onset of 
puberty.51 Conversely, inter-female aggression has been cited as 
a cause for females to not show overt signs of estrus, particu-
larly for timid cats that are lower in the social hierarchy.48

Exposure to an intact male has also been documented to affect 
cyclicity in cats. Similar to exposure to an estrual female at the 
onset of long-day light conditions, introduction of a male 
shortened the interval to cyclicity resumption, with the same 
number of days (22.3) until the first estrus was observed.27 The 
presence of a male can help accentuate signs of estrus51 and 
even the noncopulatory presence of a tom can increase the 
rate of spontaneous ovulation.35

Pharmacologic estrus induction 

The goal of a pharmacologic estrus induction is to recapitulate 
the natural cascade of the hypothalamic-pituitary-ovarian 
axis, so drugs that mimic the actions of GnRH, follicle stimu-
lating hormone (FSH), and/or LH are utilized. Initial studies 
to induce folliculogenesis in the cat focused on serial injec-
tions of porcine-derived FSH. Five daily injections were suc-
cessful in initiating follicular development; however, ovarian 
hyperstimulation was observed52-54 and the authors reported 
logistical challenges in giving multiple injections, particularly 
when this protocol was used in wild felids.55-58 

Subsequent studies have focused on equine chorionic gonado-
tropin (eCG) which is longer acting and only requires a single 
injection.59,60 In cats, eCG is primary used for its folliculogenic 
activity; however, high dosages or serial treatment can induce 
ovulation.53 More commonly, human chorionic gonadotropin 
(hCG) is used as the luteotrophic agent to induce ovulation in 
feline ovarian stimulation protocols.61,62 However, hCG also 
demonstrated folliculogenic activity in the cat, including the 
capacity to stimulate growth and maturation of smaller (< 2 
mm) antral follicles.60 Thus, although eCG is predominantly 
folliculogenic and hCG luteotrophic, each exhibits duality in 
the cat and can mimic the other’s principle action.

Historically, the most common protocol to induce estrus and 
ovulation prior to a timed ART procedure was to give 100 IU 
intramuscular eCG, followed by 75 IU intramuscular hCG 
80-85 hours later.63 The timing of the procedure depends on 
which ART is employed. Queens will ovulate ~ 30 hours after 
hCG treatment,61 so, oocytes are collected for IVF 25-27 hours 
(i.e. preovulatory) after hCG treatment63 and AIs are conducted 
31-33 hours (i.e. postovulatory) after hCG treatment.15,59 

One drawback with eCG/hCG is that both are large glycopro-
teins that persist in circulation for 4-5 days in cats and can 
induce formation of antigonadotropin antibodies, causing the 
female to become refractory to future treatment.60,64,65 
Additionally, due to its folliculogenic activity in cats, hCG can 
promote undesirable secondary follicular growth and ovula-
tions.66 These ancillary follicles and secondary CLs disrupt the 
postovulatory endocrine environment and potentially have a 
negative impact on embryo survival following AI or ET.67 
Alternatively, pLH has a very short half-life and remains in cir-
culation for just hours after injection.68 A protocol using 100 
IU intramuscular eCG and 1,000 IU intramuscular pLH with 
an 85 hour interval between treatments was highly effective 
for inducing ovulation in ET recipients without significant for-
mation of secondary ovarian structures,69 and producing high 
pregnancy percentages with both ET and AI procedures in 
cats.15 To the authors’ knowledge, there are only 2 sources of 
pLH in the USA (Novatein Biosciences and Prospec Bio) and 
the current price per cat dose ($331-$475) make it cost-pro-
hibitive in most applications.70 

Anesthesia prior to ovulation may have a detrimental effect on 
ovulation. Queens treated with eCG and hCG that were anes-
thetized immediately before ovulation demonstrated a low 
rate of ovulation and a reduced pregnancy rate (14%) follow-
ing intrauterine AI, compared to eCG/hCG-treated females 
that were anesthetized immediately after ovulation (50% preg-
nancy rate).61 Alternatively, ovulation-induction with hCG on 
days 2-4 of a natural cycle demonstrated a higher level of suc-
cess in the queens anesthetized for AI prior to ovulation (56%) 
versus queens anesthetized after ovulation (21%).71 Thus, the 
compromising effect of anesthesia on ovulation may be lim-
ited to queens exogenously treated for estrus induction. 

For gonadotropin treatment to be maximally effective in cats, 
a quiescent ovary at the time of treatment is needed.11 The high 
rate of spontaneous ovulation in cats complicates one’s ability 
to artificially control the ovaries because high circulating pro-
gesterone concentrations can reduce or even prevent the effec-
tiveness of exogenous hormone treatment.11 Regressing the 
CL, although a typical means of regulating the estrous cycle in 
other mammals, is ineffective in felids.40 

To address this issue, 2 strategies may be employed. The first is 
to confirm that the queen is nonluteal before initiating treat-
ment. This can be accomplished with vaginal cytology (refer 
to Real-time estrous cycle monitoring) and a serum proges-
terone assay (nonluteal is defined as < 2 ng/ml progesterone). 
The second strategy is to suppress estrus before initiating the 
hormone treatment protocol. A nonpregnant luteal phase in 
the cat lasts ~ 40 days,72 so the goal is to achieve ovarian inhi-
bition over the same time interval. This allows natural regres-
sion of any current CLs and prevention of any new spontaneous 
ovulations.

The synthetic progestin levonorgestrel has been used to suc-
cessfully down-regulate the feline ovary.43 Six silastic rod 
implants (36 mg levonorgestrel/rod) were placed for 39 days 
before gonadotropin stimulation and then removed 2 days 
prior to placement.33 Queens with elevated estradiol at the 
time of treatment completed a normal surge before returning 
to baseline. However, levonorgestrel successfully inhibited the 
initiation of new estradiol surges throughout the treatment 
period and the ovaries were highly responsive to the gonado-
tropin treatment after a 2 day withdrawal period. Although 
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highly effective, the biggest drawback to this technique is its 
labor intensiveness, requiring two anesthesia events before the 
estrus induction can begin.

For this reason, the oral progestin altrenogest is more com-
monly employed. Similar to levonorgestrel treatment, females 
with increased estradiol at treatment initiation completed a 
normal surge before returning to baseline.73 Unlike levo-
norgestrel, altrenogest-treated queens had new estradiol 
surges during treatment, albeit at a significantly lower rate, 
and none ovulated during treatment. Given that the domestic 
cat can have ovarian follicular activity during a luteal phase, it 
is not surprising to observe some activity during exogenous 
progestin treatment.72 The authors investigated 3 doses 
of  altrenogest, and concluded that the middle dose 
(0.088 mg/kg) was optimal for the cat as it produced normal 
baseline estrogen and progesterone concentrations and a 
more uniform return to follicular activity (10-16 days) versus 
either the low dose treatment (0.044 mg/kg; 2-12 days) or the 
high dose treatment (0.352 mg/kg; 9-35 days). Exogenous 
gonadotropin treatment 3-5 days after altrenogest withdrawal 
produced consistent follicular development and synchronous 
ovulation,74 normal luteal function,75 improvements in 
embryo development,75 and high (83-86%) AI pregnancy 
rates.75,76

The latter strategy (ovarian suppression) is more commonly 
adopted because the former strategy (confirmation of a 
nonluteal phase) may include queens in the follicular stage 
of estrus that respond suboptimally to estrus induction 
protocols compared to queens in interestrus.43 An inactive 
ovary contains primordial follicles and follicles in a gonad-
otropin-independent continuous growth phase resulting in 
a more uniform population of early antral follicles that are 
highly receptive to gonadotropin stimulation and creates a 
more uniform ovarian response.43 Furthermore, eCG is 
often used due to its FSH-like activity in cats to stimulate 
follicular growth. However, eCG also has LH-like activity 
and can trigger ovulation if given to a cat that is already in 
estrus.60 Typical timed AI protocols administer eCG ~ 5 days 
before AI.15 In this example, the queen would ovulate sev-
eral days early, and the oocytes would likely be too senes-
cent at the time of AI to fertilize. Finally, there is some 
evidence that progestin exposure (either through exoge-
nous treatment or endogenous progesterone from a sponta-
neous ovulation) primes the ovary to be more sensitive to 
the effects of gonadotropins.43,74

Direct stimulation of the pituitary with GnRH agonists has 
also been investigated. Treatment of a GnRH agonist initially 
causes an acute stimulatory phase that lasts for several days 
and is accompanied by a large increase in FSH and LH concen-
trations.77,78 With prolonged exposure, GnRH receptors are 
down-regulated, FSH and LH production is reduced, and tem-
porary infertility is induced. Deslorelin is a GnRH agonist 
with a biological potency 10-144 times higher than native 
GnRH.79 Deslorelin is commercially available as a slow-release 
subcutaneous implant (Suprelorin®, Virbac). It is registered in 
the European Union (EU), Australia, and New Zealand for 
long-term suppression of adult male dogs (see Estrus sup-
pression) and, as of June 2022, the 4.7 mg implant has been 
approved in the EU for use in male cats.80,81 In the USA, 
Suprelorin F® is a Food and Drug Administration Indexed 
Product to manage adrenal disease in male and female fer-
rets.80 Thus, any use of Suprelorin in the queen is considered 
extra-label. 

Consistent results were reported using the 4.7 mg Suprelorin 
implants to induce estrus in queens.82 The implants were 
placed in the umbilical area without sedation or general 
anesthesia. Queens were monitored for estrus via daily 
behavioral observation, daily vaginal cytology, and every 
other day transabdominal ultrasonography. Estrus was 
detected 5.0 ± 2.2 days after implant placement in 100% of 
the 13 queens tested. Seven females had behavioral estrus 
and an average of 4.8 ± 1.6 follicles were detected with 
ultrasonography. Once peak estrus was observed (as defined 
by vaginal cytology with 100% cornified cells on a clear 
background), 100 IU of intramuscular hCG was given. Peak 
estrus was identified 4-11 days after implant placement. 
Serum progesterone measured 5-6 days after hCG treatment 
confirmed ovulation in all queens. Three of the females 
were artificially inseminated twice; procedures were per-
formed 24 and 48 hours after hCG treatment with fresh 
semen deposited transcervically into the uterine horns. The 
AIs were performed under general anesthesia, and the 
implant was removed during the first AI. All females became 
pregnant and gave birth to healthy kittens. 

A separate study only reported successful estrus induction 
in 10% (2/20) of queens treated with a 4.7 mg deslorelin 
implant.83 Ten females were treated 3 days after estrus began 
and another 10 females were treated 7 days after the end of 
estrus. Estrus was induced in 1 female from each treatment 
group. The 9 females that were treated after the end of 
estrus and failed to respond to estrus induction had serum 
progesterone concentrations > 1.5 ng/ml, indicating they 
were luteal at the time of treatment. On the contrary, the 
study with 100% estrus induction82 only treated females in 
anestrus/interestrus, and the authors theorized the dispar-
ity of responses could be explained by the difference in 
stages of the estrous cycle during treatment. Indeed, it 
would appear much like the ability of the ovary to respond 
to gonadotropins, a quiescent ovary is more capable to 
respond to GnRH agonist treatment. 

Deslorelin implants have also been utilized to down-regu-
late ovarian activity prior to eCG/hCG stimulation; 10 
queens were treated with 4.7 mg deslorelin implants for 90 
days.84 Following a 10 day withdrawal period after implant 
removal, cats were treated with eCG/hCG and spayed 3 days 
later. The authors recovered ovulated oocytes via oviductal 
flushing and confirmed viability with propidium iodide 
dye exclusion, but no further assessments were made for 
oocyte quality or competence. It is of note that on average, 
females had 13.1 ± 5.5 CLs and 8.5 ± 5.5 follicles, indicat-
ing that deslorelin pretreatment did not prevent gonadotro-
pin-induced ovarian hyperstimulation. 

The combined use of eCG and GnRH has been explored as an 
alternative protocol for ET recipient synchronization in the 
cat. Anestrual queens were treated with 100 IU intramuscular 
eCG followed 80 hours later with 1 or 2 (12-hour treatment 
interval) subcutaneous injections of 25 µg GnRH agonist 
gonadorelin.69 Only 1 female (out of 5) in each group ovu-
lated. The 2 ovulatory females had significantly higher serum 
LH concentrations compared to anovulatory cats, suggesting 
that an insufficient pituitary release of LH was responsible for 
ovulation failure.

Finally, there is a single report on the use of serial intramuscu-
lar naloxone treatments (0.04 mg/kg daily for 4 days) in con-
junction with a single intramuscular hCG (1,000 IU) treatment 
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to induce estrus and ovulation in the cat via antagonization of 
the hypothalamic GnRH opioid block.85 Eight of the 9 treated 
females ovulated (based on increase in serum progesterone); 
hCG treatment appeared to be necessary for ovulation induc-
tion, as none of the females (n = 4) treated only with nalox-
one ovulated. 

Natural estrus ovulation induction

One of the largest drawbacks to estrus induction is that it 
often relies on exogenous gonadotropins to stimulate follicu-
lar growth, oocyte maturation, and ovulation. In other mam-
mals, gonadotropin treatment can affect the normal follicular, 
oviductal, or uterine environment leading to poor quality 
oocytes or reduced implantation rates.86,87 In cats, exogenous 
gonadotropins can hyperstimulate the ovary and create an 
abnormal endocrine environment. Compared to naturally 
cyclic females, gonadotropin-treated queens produce a higher 
number of total follicles (5 in a natural state72 versus > 10 with 
gonadotropin treatment),60 a higher number of unovulated 
follicles54 (ovulation is an all or nothing phenomenon in the 
naturally-mated queen),30 and more follicular cysts.53 
Additionally, gonadotropin-treatment in felids has been asso-
ciated with the production of antigonadotropin antibodies, 
disruption of oviductal embryo transportation, and reduced 
embryo quality.32,60,64-66,88 

Timed estrus induction protocols are often paired with a 
period of ovarian suppression beforehand. Although some 
data suggest progestins may have a positive role in priming the 
ovary to favorably respond to gonadotropin treatment,43,73 the 
entirety of effects exogenous progestins can have on the uter-
ine environment is still unknown. Progesterone and its recep-
tors in the uterus have a major role in both maintaining 
pregnancy and in the progression of disease, creating a deli-
cate balance that is not entirely understood, even in human 
medicine.89 As a species that demonstrates both induced and 
spontaneous ovulation, it is difficult to conclude whether pro-
gesterone presence prior to an estrus phase is advantageous, 
detrimental, or has no effect on fertility.

Ovulation induction following a natural estrus represents a 
viable alternative to estrus induction and has the potential to 
reduce or eliminate the need for exogenous gonadotropins. In 
humans, exogenous ovarian stimulation is associated with a 
higher rate of pregnancy loss before pregnancy can be clini-
cally detected and a reduced implantation rate compared to 
natural cycle conception rates.90 Natural cycles are aimed at 
achieving physiological concentrations of estradiol and pro-
gesterone, and ovulation can be induced by natural mating 
behavior, manual stimulation, or exogenous hormone ther-
apy. Irrespective of the specific technique used for ovulation 
induction, reliable and accurate detection of estrus is obliga-
tory for success. 

Real-time estrous cycle monitoring

Estrus is characterized by a rapid increase in estradiol, from a 
baseline plasma concentrations of ~ 15 pg/ml to > 20 pg/ml as 
the ovarian follicles grow into distinct, vesicular structures > 2 
mm in diameter.72 Serum estradiol could be considered for 
estrus monitoring, but there is a ~ 1-2 week turnaround time 
in commercial reference laboratories (e.g. 7-16 days at IDEXX) 
and, to the best of the authors’ knowledge, there are no com-
mercially available in-house estradiol assays validated in the 
cat. The long turnaround paired with the inherent difficulty in 

serial blood sampling feline patients currently precludes the 
use of serum estradiol as a useful tool to monitor the estrous 
cycle in real-time. 

Following natural mating, LH surges within minutes, ovula-
tion occurs 24-32 hours later, and progesterone increases 1-2 
days after ovulation.72,91 Because cats have no preovulatory 
surge in progesterone, serum concentrations cannot inform 
the ideal breeding window as it is used in domestic dogs. 
However, serum progesterone can be useful to confirm ovula-
tion. The authors recommend waiting a minimum of 5 days 
after the ovulation-inducing event to perform a serum proges-
terone test.

Feces are the major route of excretion for both estradiol and 
progesterone metabolites in domestic cats.36,92 Excreted fecal 
hormone metabolites accurately reflect hormonal patterns in 
the blood, considering the appropriate time delay (12-24 
hours) for metabolite passage from the blood into the feces. 
Unfortunately, the gut transit delay plus an additional ~ 48 
hours for sample shipment, processing, and assaying renders 
this technology unsuitable for real-time natural cycle moni-
toring. However, fecal hormone analysis remains a valuable 
noninvasive tool for retrospective longitudinal hormone 
monitoring in domestic and nondomestic felids. 

Unlike their canine counterparts, felids do not display vulvar 
swelling or vaginal bleeding during the estrous cycle.21 Because 
of the minimal overt outward changes, behavior has been the 
mainstay for monitoring felid estrous cycles. Stroking of the 
flanks and perineal region by a handler may be used to elicit 
treading of the hind feet and lordosis (bent forelegs with hind 
quarters elevated and lateral tail deviation).93 Other behaviors 
that may be associated with estrus in the queen include roll-
ing, intense vocalization, frequent urination, and increased 
restlessness. However, there is a great deal of individual varia-
tion in what behaviors are expressed. Queens that are particu-
larly affectionate can exhibit estrous behaviors, including 
lordosis, during times of anestrus. Additionally, behavioral 
estrus can lag behind physiologic estrus, with only 8% of cats 
demonstrating estrous behaviors on day 1 (as defined by > 20 
pg/ml plasma estradiol), whereas 80% of cats show such 
behavior on day 4.93 

For these reasons, it is the authors’ recommendation to pair 
behavioral observation with vaginal cytology. Although not as 
commonly used as in dogs, vaginal cytology can help accu-
rately determine estrus, especially if performed with regular 
(ideally daily) sampling. To distinguish other similar periods 
of the reproductive cycle, 2 or 3 consecutive vaginal cytology 
samples should be assessed for the proportion of basal, 
parabasal, intermediate, and superficial epithelial cells, as well 
as assessing for background polymorphonuclear cells, bacte-
ria, and mucus.94-96 Up to 1/3 of females may have signs of 
estrus before cornified cells are noticed on vaginal cytology;48 
instead, clearing of the vaginal smear background (absence of 
cellular debris) is the most sensitive and earliest indicator of 
follicular activity, and occurs ~ in 1/3 of cats during proestrus.93 
Vaginal cytology with clearing of the background, a reduction 
of cellular debris, and a proportion of superficial cells > 80% 
is indicative of estrus in both domestic cats and African 
lions.94-96 Given that the cat is an induced ovulator, with vagi-
nal stimuli from the tom during coitus being the canonical 
inducing agent, it is important to note that vaginal cytology 
examination alone did not increase the risk for ovulation 
induction.96 
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Ultrasonography is another tool that can aid in estrous cycle 
monitoring. Although transabdominal ovarian ultrasonogra-
phy has been described to monitor ovarian follicular growth 
during estrus, it is not commonly employed in cats.97 In the 
authors’ experience, follicles are routinely identified as round 
anechoic structures, but corpora lutea (CL) are not easily visu-
alized. In a study performed with queens in a trap-neuter-re-
lease program, only 55% (11/20) of CLs found on retrospective 
histopathology were identified via transabdominal ultraso-
nography.98 The CLs that were readily identified were hypere-
choic, large, and/or deformed along the ovarian margins. 
Identification was more challenging and/or not possible when 
they were iso- or hypoechoic to the ovary. Because timing of a 
natural cycle would primarily be based on follicular growth, 
ultrasonography can be beneficial. Verification of ovulation 
with ultrasonography could provide more immediate feed-
back, but this information can be achieved by other means 
(e.g. progesterone monitoring) if the CL(s) is/are not readily 
identified.

Induction of ovulation

Manual stimulation

During natural mating, there are 2 overarching factors that 
determine whether a female will ovulate after copulation: 
number of stimuli and timing relative to day of estrus. Single 
copulations can induce ovulation in a subset of females (21-
50%), whereas multiple copulations (3-12) during a 4 hour 
period in a single day of estrus resulted in higher ovulation 
rates (83-100%).29,30,99,100 

Although multiple copulations appear to be consistently 
superior across studies, there are various reports of the rela-
tive day of estrus and mating intervals used. In the first paper 
to describe manual ovulation induction, queens were stimu-
lated with a glass rod during their first signs of estrus and 
ovulated 9 out of 12 times.101 In more recent feline manual 
induction protocols, a series of 5 vaginal stimulations at 30 
minute intervals during peak estrus or maximum follicular 
diameter induced ovulation in 72 (8/11) to 75% (9/12) of 
queens.2,97 Peak estrus is variable among breeding ovulation 
studies, with most indicating on days 3-5 of estrus.4,29,100 
Breeding before the third day of estrus can reduce LH secre-
tion and increase the chance of ovulation failure,102 compara-
ble to a report97 that detected maximum follicular diameter 
on 3.8 ± 0.3 days. 

Pharmacologic ovulation induction

Early studies reported a wide range of hCG doses (50-500 
IU) used to induce ovulation during days 1-2 of natural 
estrus, given either the day before or on the day of AI.52,103 
More recently, several studies have been performed using 
intravenous hCG treatment on days 2-4 of natural estrus, 
with either 2 100 IU injections given 24 hours apart or a sin-
gle 250 IU injection.71,104,105 Ovulation rate with either proto-
col was relatively high in all studies (82.4-95.6%), and these 
protocols were used in conjunction with vaginal or uterine 
AIs at 15, 20, and/or 30 hours after hCG treatment to suc-
cessfully produce live offspring. Subsequently half-life and 
bioavailability of hCG was determine and that were similar 
between intramuscular and intravenous treatments60; how-
ever, to the authors’ knowledge, no studies have subsequently 
been performed to assess ovulation rates with intramuscular 
hCG utilizing the aforementioned treatment protocol. Due 

to its potential to cause neutralizing immunoglobulins and 
undesirable secondary follicular growth, it is not the authors’ 
recommendation to use hCG in natural cycle ovulation 
induction protocols. 

Because of its small size (9 amino acids), GnRH is not detected 
by the immune system and therefore can be used repeatedly 
without the development of antiGnRH antibodies.106 Nor is it 
associated with ovarian hyperstimulation, likely due to its dif-
fering mechanism of action, or more specifically, that it targets 
the pituitary, which creates another level of opportunity for 
feedback inhibition.107 Treatment with a single intramuscular 
injection of 25 µg gonadorelin (GnRH agonist) resulted in a 
sharp increase in serum LH for queens in estrus or anestrus 
and ovulation was observed in 100% (4/4) of estrual queens.108 
A single 25 µg intramuscular injection of gonadorelin given 
on day 2 or 3 of natural estrus produced a comparable num-
ber of ovulations (4.1 ± 0.8) to a single intramuscular injec-
tion of 250 IU hCG given during the same time period (4.0 ± 
0.9).54 Subcutaneous treatment of 25 µg gonadorelin with 
repeated vaginal stimulations resulted in a 100% (7/7) ovula-
tory rate on day 3 of estrus.96 A more recent study utilized a 
single intramuscular injection of 50 µg gonadorelin on day 
2-4 of behavioral estrus, with successful ovulation occurring 
in 84% of treated females.106 

The authors have used 2 treatments of gonadorelin 12 hours 
apart on days 3-4 of natural estrus (defined by vaginal cytol-
ogy and/or behavior), with successful ovulation induction 
(defined by laparoscopic ovarian examination and/or fecal 
progesterone metabolite analysis) in the domestic cat (25 
µg), ocelot (50 µg), Amur leopard (100 µg), and jaguar (100 
µg). A single intramuscular injection of GnRH agonist buser-
elin (~ 50 times more potent than native GnRH79 and not 
currently available in the USA) on day 4-6 of natural estrus 
in the Asiatic golden cat (3 µg) and lion (20 µg) resulted in 
ovulation, and in conjunction with AI, produced live 
offspring.109,110 

The llama is an induced ovulator that relies on ovula-
tion-inducing factors (OIFs) in the seminal plasma, rather 
than the physical act of copulation, to trigger ovulation. 
Beta nerve growth factor (Beta-NGF) has been identified as 
the potent OIF in llamas, capable of eliciting ovulation 
either through intrauterine infusion or intramuscular injec-
tion.111,112 Beta-NGF has since been detected in the seminal 
plasma of a variety of other induced and spontaneous ovu-
lator species, although cats have not specifically been inves-
tigated.113 Sixty-seven percent (4/6) of cats treated on day 2 
of natural estrus ovulated in response to subcutaneous cat 
seminal plasma, versus 0% (0/6) of cats treated with intra-
muscular cat seminal plasma, and 17% (1/6) of cats treated 
with subcutaneous purified llama Beta-NGF.114 This sug-
gests that cat seminal plasma may contain OIFs that help 
support ovulation in the queen. Although not currently 
available for clinical use, the identification and isolation of 
cat OIF molecules could offer a new avenue for ovulation 
induction in the queen. 

Finally, as reported in the Estrus induction section, pLH has 
commonly been employed to stimulate ovulation after 
eCG-mediated estrus induction during timed ART procedures. 
To the authors’ knowledge, there are no reports that have uti-
lized pLH to induce ovulation from a natural cycle, but it 
could be considered as an alternative to hCG or GnRH 
treatment. 
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Estrus suppression

As discussed above, a quiescent ovary is required for estrus 
induction to be maximally effective. Ovarian suppression 
protocols that are specifically designed for treatment prior 
to gonadotropin are reviewed in the Pharmacologic 
estrus induction subsection. This section will address the 
other reasons safe and reliable estrus suppression is 
needed in cats. 

Breeders often request estrus suppression in queens to tempo-
rarily delay breeding without compromising future fertility.115 
Even in cats not intended for breeding, owners may be reluc-
tant to choose surgical neutering due to concerns about preex-
isting conditions or surgical complications.116 Ovarian 
remnant syndrome is a well-documented surgical complica-
tion in cats, and in some cases, it may be difficult or impossi-
ble to identify and remove the residual ovarian tissue, whereas 
other means of reproductive control need to be consid-
ered.117,118 Finally, cat overpopulation (i.e. unowned, outdoor 
‘community cats’) is a global concern. The surgical model of 
trap-neuter-return (TNR) has remained the gold standard for 
humanely reducing community cat populations. Although the 
rise in subsidized spay-neuters has helped to significantly 
reduce the rate of shelter euthanasia in USA, TNR is limited by 
access to resources and veterinarians.119 The COVID-19 pan-
demic amplified the shortage, creating a deficit of over 2.7 mil-
lion spay/neuters for companion animals in USA.120 This 
shortage is further magnified in developing countries with 
limited economic resources and some countries do not legally 
permit surgical neutering. Nonsurgical options for long-term 
(or permanent) contraception could help augment traditional 
TNR programs. 

Photoperiod

Queens are highly responsive to changes in photoperiod; a 
light:dark cycle of 8:16 hours is sufficient to immediately 
cease cyclity.26 The time it takes to resume cyclicity after a 
return to long-day light conditions (14:10 light: dark hours) 
varies by study (12-46 days), and the interval can be shortened 
by providing 1 hour of light during the dark period, cohabita-
tion with estrual females, or introduction of a tom.26,27 

Melatonin

Photoperiod exerts its effect on the queen’s cyclicity via the 
retino-hypothalamic pathway to the suprachiasmatic nuclei 
that in turn regulates melatonin synthesis by the pineal 
gland.121 Melatonin is a neuromodulatory substance that 
inhibits hypothalamic secretion of GnRH.122 In the cat, 
melatonin synthesis peaks during the night and serum con-
centration is ~ 15-fold higher than during the day.123 Thus, 
exogenous melatonin treatment is a logical target for estrus 
suppression. 

Daily oral melatonin (30 mg/cat), given 3 hours before lights-
off, is effective in suppressing estrus.123 Serum melatonin con-
centrations peaked ~ 1 hour after treatment and remained 
significantly elevated above endogenous night-time concen-
trations for at least 8 hours. Three of the 6 treated females 
demonstrated a period of ovarian follicular activity early in 
treatment (based on fecal estradiol metabolite analysis), but 
all follicular activity stopped after day 25 of treatment. 
Following 35 days of melatonin treatment, females took 21-40 
days (33 ± 2.8) to resume cyclicity. 

The authors also studied the use of melatonin as an ovarian 
down-regulation strategy prior to gonadotropin stimulation 
and AI. Although 30 days of treatment prior to AI was success-
ful in down-regulating the ovaries and still allowed the queen 
to respond to eCG/hCG treatment (given either at the end of 
melatonin treatment or after a 2 day withdrawal period), the 
authors did not recommend the use of melatonin as a prego-
nadotropin suppression protocol because it only marginally 
reduced ancillary follicle development and had no impact on 
quantity or quality of embryos produced from AI. 

Some cats may be refractory to daily oral melatonin treatment. 
Therefore, long-term release subcutaneous melatonin 
implants have also been investigated. Most of the studies have 
utilized an 18 mg implant marketed for use in sheep 
(Melovine®, CEVA). Similar to oral melatonin treatment, com-
plete suppression may require a period of time and estrus can 
occur soon after treatment. Therefore, estrous stage should be 
considered at the time of implant placement. Approximately 
80% of queens implanted during estrus will have estrus behav-
ior shortly after implantation.124 Conversely, queens implanted 
in late interestrus demonstrate estrus in ~ 35% of cases122,124-126 
and queens implanted during anestrus127 or early interestrus125 
did not come into estrus. The estrus that follows a melatonin 
implant may be fertile, as 1 queen in estrus after treatment was 
allowed to breed and produced a live litter.122 Typical duration 
of estrus suppression for queens implanted during interestrus 
is 1-3 months,122,124-126,128 but larger ranges (21-277 days; ~ 0.7-
9.2 months) have been reported.129

An important consideration of the Melovine® implant is that 
the product is designed for sheep, and each pack contains 25 
implants to be loaded sequentially to ewes with a single appli-
cator.81 This would not be considered appropriate by feline 
practitioners and thus, alternative application schemes, such 
as insertion through a skin incision,122 should be performed. 
Similarly, preservation of sterility for the remaining implants 
needs to be addressed. 

GnRH agonists

Although GnRH agonist treatment initially causes an acute 
stimulatory phase,77,78 prolonged exposure leads to desensiti-
zation of the GnRH receptors, reducing production and/or 
release of FSH and LH, inducing a state of infertily.130 
Most studies investigating the use of deslorelin in the queen 
have been performed with a 4.7 mg deslorelin implant 
(Suprelorlin®), therefore this review will focus on those data. 
In cats, the implant is typically inserted through a needle sub-
cutaneously into either the subscapular83,84 or umbilical area,82 
with the latter being preferred for easy removal of the implant.81

In male dogs treated with the 4.7 mg implant, serum deslore-
lin concentrations peaked during the first week after treatment 
and then gradually decreased, reaching undetectable concen-
trations around day 80.130 No comparable pharmacokinetic 
studies have been performed in the cat. Clinical data from a 
study82 suggests an initial peak of deslorelin during the first 
week of treatment likely occurs in the queen as well. The dura-
tion of efficacy, however, is much longer and more variable in 
queens compared to bitches. In one study, duration of efficacy 
ranged between 483-1,025 days (~ 16-34 months), with 1 
female still clinically suppressed at the study’s conclusion 
(1,102 days, ~ 37 months).83 Other studies have reported effi-
cacy to last 4-14 months,129,131 and 18-26 months.132,133 One of 
the latter mentioned studies treated 14 cats with 9.5 mg 
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deslorelin implants and 1 (7%) had no suppression of ovarian 
activity.133 It is unknown whether this large variability in effect 
duration is due to individual variation of susceptibility to 
deslorelin, individual variation in the desensitization mecha-
nism, degree of vascularization at the insertion site, or other 
undescribed factors.80

During the acute stimulatory or ‘flare-up phase’, estradiol con-
centrations surge and can lead to a behavioral estrus within a 
few days of implant insertion. The rate of estrus induction var-
ies by study protocol and is largely influenced by the queen’s 
estrous stage, with interestrus females being the most reliable 
estrus presenters.82-84,133 Ovulation may also occur. In one 
report, 40% (4/10) of treated cats ovulated (determined with 
weekly blood progesterone analyses) during the flare-up 
phase.84 It is important to note that these estrus events can be 
fertile, as high pregnancy rates were achieved using deslorelin 
to induce estrus for AI.82 In this case, the implants were 
removed at the time of the procedure. However, pregnancy can 
be maintained in deslorelin-treated queens that are mated 
during the flare-up phase134 or ~ 7-9 days before implant place-
ment.81,135 In one case report of a suspected mismating 8-9 days 
before implant placement, the queen delivered 4 healthy kit-
tens, but had no maternal interest and had inadequate lacta-
tion.135 Prolactin was not measured, so the specific mechanism 
of deslorelin-induced hypogalactia could not be identified. 
Following parturition, the queen entered anestrus and did not 
have another estrus until 498 days after treatment. 

Another curious variability observed with deslorelin treat-
ment is that a subset of females can have a period of estrus 
that is not connected to the end of the implant’s action, as 
these episodes will be followed by another prolonged period 
of anestrus. A study reported that 1 female (n = 20; 5%) had 2 
periods of estrual signs, 138 and 155 days after treatment.83 In 
another study, 1 female (n = 14; 7%) exhibited estrous behav-
ior to her caretaker 3.5 months after beginning treatment, but 
did not allow a tom to mount her.133

In a study that removed implants at 3, 6, or 9 months after 
placement, the authors concluded that ~ 3 weeks are needed 
during increasing photoperiod to resume cyclicity, and this 
requirement can increase up to 7 weeks if the photoperiod is 
decreasing.134 The length of implant placement had no effect 
on the length of time needed to return to estrus. A return to 
fertility after termination of deslorelin treatment (via surgical 
removal of implant or cessation of implant effect) has been 
consistently demonstrated. Studies have confirmed the 
queen’s capacity to ovulate,84 return to normal cyclicity,83 and 
produce normal litters.83 The most common side effect 
reported is weight gain that is often reversible after implant 
removal/failure without dietary intervention.129 Other side 
effects occurred far less frequently and include persistent 
estrus,129,134 galactorrhea,129,136 and implant site lesions.129,133 

Data on the effects of long-term treatment are lacking. There is 
one case report of a queen treated at 1 year of age and then 
treated repeatedly every time she showed estrus (which 
occurred ~ every 2 years). When she presented with estrus at 8 
years of age, the female was spayed and her reproductive tract 
was examined histologically. The ovaries were juvenile in 
appearance, containing numerous primordial and primary 
follicles. However, the uterus demonstrated marked endome-
trial hyperplasia, suggesting that repeated deslorelin stimula-
tion and subsequent flair-up stages can have a negative effect 
on uterine health.137

Overall, deslorelin treatment is regarded as relatively safe in 
cats, with minimal side effects, a quick return to fertility, 
and a high rate of efficacy. Its largest drawback is the wide 
range in duration of effect. Owners should regularly moni-
tor for signs of estrus and consider intermittent vaginal 
cytology to more precisely predict when an implant’s effect 
is waning. 

Progestins

Progestins are synthetic derivatives of progesterone that bind 
to the progesterone receptor with a greater affinity than endog-
enous progesterone.138 Progestins have the same biological 
effects as progesterone and have been used for a variety of clin-
ical cases, such as dermatologic and behavioral disorders.139 
Their main veterinary application remains as control of the 
estrous cycle.140 

The mechanism of action by which progestins facilitate 
estrus suppression is not fully known. One well-accepted 
pathway proposal is through negative feedback on the 
hypothalamus and pituitary, suppressing release of GnRH, 
FSH, and LH.141,142 Progestins may also inhibit sperm trans-
port by thickening cervical mucus and reducing uterine 
motility, as well as preventing implantation through endo-
metrial alterations.141,143,144

Progestins use in queens has been associated with cystic 
endometrial hyperplasia-pyometra complex, fibroadeno-
matous mammary hyperplasia, mammary neoplasia, adre-
nocortical suppression, and diabetes mellitus.141,145-154 
These effects were magnified with long-term treatment, 
higher dose usage, or when the queens were older and/or 
had preexisting conditions. It is therefore the authors’ rec-
ommendation to not consider progestin therapy as a strat-
egy for long-term fertility control in the queen. However, 
there is a global shortage of access to spay/neuter pro-
grams, which was amplified by the COVID-19 pandemic.120 
This has prompted animal welfare advocates and organi-
zation, such as the Alliance for Contraception in Cats & 
Dogs (ACC&D), to suggest the strategic use of megestrol 
acetate (MA) in queens when spay services are available 
but delayed.155,156 

Megestrol acetate (6-methyl-6-dehydro-17α-acetoxyprogester-
one, MA) is a potent progestin, with activity estimated to be 
several times higher than endogenous progesterone.138 It is 
commercially-available as an oral formulation in several 
European countries.157 MA became commercially-available in 
the USA in 1975 as an FDA-approved veterinary drug for 
female dogs (Ovaban®, Intervet Schering-Plough); off-label 
use in the cat was not uncommon.139 In 2008, an extra-label 
formulation of MA was developed by a private veterinarian 
and marketed to free-roaming cat colony caretakers 
(Feralstat).156 The intention was to serve as an adjunct to TNR 
programs by preventing pregnancy in queens waiting to be 
spayed, although some caretakers elected to use this product 
in lieu of surgical sterilization. The package insert instructed 
weekly dosing at ~ 0.1-0.2 mg/kg MA, which was significantly 
lower than dosing regimens previously reported to be effective 
at pregnancy prevention. A veterinary consultant for ACC&D 
interviewed several Feralstat users, who reported satisfactory 
results (i.e. generally healthy colony and pregnancy preven-
tion).158 However, no prospective studies have been performed 
to assess the safety and efficacy of MA given in this dosing 
regimen.
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Efficacy of weekly treatment of 2.5 mg/cat for at least 30 weeks 
in 244 cats was assessed.150 Twenty-one females demonstrated 
estrus during treatment. Two females that were pregnant prior 
to treatment initiation had abnormal pregnancies; no other 
pregnancies were reported. An increase in appetite was 
reported in 33.6% (89/244) of queens and weight gain was 
noted in 13% (32/244) of queens. One female (0.4%) that 
received MA for 3 years developed pyometra and mammary 
adenocarcinoma. 

Assuming a 4 kg body weight, 2.5 mg/cat would equate to 
0.625 mg/kg/week, which is considered a low dose in cats.157 
This is an important point as higher progestin dosages are cor-
related with a higher rate and/or increased severity of side 
effects. It is of note that most of the European-based formula-
tions list 2.5 mg/week for a maximum of 30 weeks as the sug-
gested dosing regimen. It is contraindicated to start MA 
treatment when a female is luteal, as adding a synthetic pro-
gestin to endogenous progesterone could be equivalent to 
high-dosage treatment, and it is currently recommended to 
only treat queens in anestrus or interestrus.157,159

The American College of Theriogenologists (ACT) does not 
support the use of progestins, including MA, for contraception 
in free-roaming cat populations. In their joint Position 
Statement with members of the Society for Theriogenology, 
ACT cites the potential for inaccurate dosing, inadvertent 
treatment of pregnant females or nontarget species, and the 
adverse health events associated with progestin use as reasons 
for discouraging its use in this manner.160 It was stated that, 
“[progestins], including megestrol acetate, may be available to 
veterinarians for treatment of individually owned cats, but 
only within the strict confines of a veterinarian-client-patient 
relationship, including a veterinary prescription.” ACC&D 
currently supports the use of MA in queens, “that can be indi-
vidually treated at prescribed times with an accurate dose, and 
whose health can be monitored over time …as a stopgap mea-
sure to prevent pregnancy in female cats at risk of conceiving 
while awaiting spay surgery.”155 While historically advising 
against the use of MA in free-roaming cats, ACC&D stated that 
because of the COVID-19 pandemic, and the subsequent 
strain that it has put on spay/neuter programs, they do sup-
port the consideration of short-term, low dose MA treatment 
in situations where surgical spay is not an immediate option. 

In conclusion, the authors do not recommend progestin-based 
contraception as a strategy for long-term fertility control. The 
use of MA may be considered in females where surgical steril-
ization is planned but delayed. Rigorous data on the safety 
and efficacy of low-dose MA treatment are lacking; careful 
patient selection and thorough clinical monitoring is 
warranted. 

Permanent contraception

Due to the cost and logistical demands of large-scale TNR pro-
grams, considerable effort has been placed towards the devel-
opment of a single-dose, nonsurgical, low-cost alternative for 
permanent contraception in the cat. Early studies focused on 
the use of immunocontraceptive vaccines that control fertility 
by stimulating the production of antibodies against proteins 
that are essential for reproduction. 

One such approach utilizes porcine zona pellucida (pZP) gly-
coproteins extracted from pig ovaries. Treatment in several 

mammalian species (e.g. horse,161 rabbit,162 dog,163 elephant,164 
white-tailed deer,165 and seal166) resulted in production of anti-
bodies that bind to the surface of the oocyte, which block 
sperm penetration and subsequent fertilization. A vaccine for-
mulation that incorporates pZP antigens into multilamellar 
liposomes (SpayVac™, ImmunoVaccine Technologies Inc) was 
investigated in the domestic cat, due to its ability to induce 
long-term contraception in other tested species.167 All vacci-
nated kittens developed high antipZP antibody titers, but the 
treatment did not prevent cyclicity or pregnancy. Ovarian 
immunohistochemical analyses revealed that the antipZP 
antibodies produced by SpayVac-treated kittens did not recog-
nize feline ZP (fZP). These results align with a study that 
demonstrated cat and pig zonae pellucidae expressed a very 
small number of shared antigenic determinants.168 A subse-
quent study screened native soluble-isolated ZPs (SIZPs) iso-
lated from 5 mammalian species: cows, cats, ferrets, dogs, and 
mink.169 Treatments from all species resulted in antiSIZP anti-
body production. However, the antiSIZP antibodies had low 
cross-reactivity to fZP, as evidenced by low antifZP titers and 
lack of binding to feline ovaries. 

The next immunocontraceptive investigated was GonaCon™, a 
GnRH vaccine developed by scientists at the United States 
Department of Agriculture-Animal and Plant Health 
Inspection Service Wildlife Service’s National Wildlife 
Research Center (USDA-APHIS NWRC) for use in wildlife. 
Because GnRH is the ‘master regulator’ of reproduction, anti-
bodies against hypothalamic GnRH prevents the normal hor-
mone cascade required for sex-steroid production and 
gametogenesis.170 GonaCon was originally developed for use 
in wild horses and white-tailed deer, but has since been 
applied to a variety of species, including the cat. After a single 
GonaCon injection, 93% of cats were infertile for the first year 
after vaccination, whereas 73, 53, 40, and 27% remained 
infertile for 2, 3, 4, and 5 years, respectively.171 

Since GonaCon was initially produced by the NWRC, it has 
undergone several formulation changes.172 Compared to the 
formulation tested171 in 2011, the GonaCon formulation regis-
tered with the Environmental Protection Agency (EPA) in 
2016 consisted of a different antigen-carrier protein and 
increased antigen concentration. Therefore, our laboratory 
investigated the safety and efficacy of this updated EPA-
registered formulation.173 All cats (n = 6) developed antiGnRH 
antibodies within 30 days after vaccination. The endpoint titer 
(1:1,024,000) was similar among all cats, and titers remained 
at that level throughout the duration of the study (4-6 
months). Because the vaccine was tested on ovariohysterecto-
mized cats, fertility could not be assessed. Therefore, a larger 
follow-up study in intact females was performed.174 Sixty per-
cent (12/20) of GonaCon treated females became pregnant 
within 4 months after breeding trial initiation. Two additional 
females became pregnant within 1 year after treatment, for a 
total of 70% (14/20) of queens that became pregnant follow-
ing vaccination. 

The poor contraceptive efficacy was not anticipated, based on 
the high rate of contraception in queens treated with the ear-
lier GonaCon formulation171 and high antiGnRH antibody 
titers observed with the current formulation in ovariohysterec-
tomized queens.173 Antibody titers were not performed in this 
study; therefore, batch to batch variation in vaccine produc-
tion could not be ruled out. Individual vaccine response vari-
ation as well as differences in study population and design 
(the former study was performed with laboratory cats under 
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controlled, indoor conditions, whereas the latter was per-
formed with cats adopted from shelters in an ambient-tem-
perature facility with daily outdoor access) should also be 
considered. Irrespective of the cause for treatment failure, the 
overarching conclusion was that GonaCon cannot currently 
provide contraception for a sufficient proportion of the popu-
lation to justify its use for control of free-roaming cats. 

More recently, our laboratory reported a novel approach for 
long-term contraception in the cat utilizing anti-Müllerian 
hormone (AMH) that plays a critical role in ovarian folliculo-
genesis.175 At high concentrations, AMH inhibits the recruit-
ment of primordial follicles into the pool of growing follicles 
and decreases the FSH-responsiveness of growing follicles. An 
adeno-associated viral vector, delivered intramuscularly as a 
single injection, was used to overexpress AMH in adult female 
queens. Fecal hormone metabolite analysis was used to mon-
itor progesterone and estrogen concentrations, and 2 breeding 
trials (4 months duration) were performed 1 and 2 years after 
treatment. All control cats produced kittens (3/3), but none of 
the treated cats became pregnant (0/6). Treated cats had a 
reduction in average progesterone concentrations, a reduction 
in the rate of spontaneous ovulation, and complete inhibition 
of coitus-induced ovulation. Furthermore, the cats’ AMH con-
centrations remained elevated for 5+ years since initial treat-
ment (unpublished data), indicating that gene therapy 
treatment may be able to provide contraception for the rest of 
the cats’ lives. Further studies, large-scale production facilities, 
and FDA approval will be required before this product can be 
made commercially available.

In summary, a permanent, nonsurgical approach to steriliza-
tion would be a powerful tool for the humane control of 
free-roaming cat populations and could provide owned-cats 
with an alternative to surgical spay. Although considerable 
research has been conducted in this field, no permanent, non-
surgical sterilization products are commercially available. 
Despite success in many other mammalian species, immuno-
contraceptive approaches have not been effective in the cat. 
However, the application of gene therapy provides an exciting 
proof of concept and suggests the realization of nonsurgical 
sterilization in the domestic cat may be on the horizon. 

Conclusion

Many methods of estrus manipulation exist in felids depend-
ing on the goal of the treatment, but success rates vary widely 
among and within estrus induction, ovulation induction, and 
estrus suppression protocols. External stimuli such as light and 
social interactions play a major role in feline cyclicity and 
should be considered before pharmaceutical manipulation. 
Gonadotropins and GnRH agonists have successfully been 
used in cats for estrus and/or ovulation induction. Melatonin, 
GnRH agonists, and progestins can all suppress feline estrus. 
However, dose and duration of treatment should be considered 
on an individual basis. These tools are useful when working 
with the feline estrous cycle, but understanding each regimen’s 
limitations is critical before making an appropriate selection. 
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